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Lecture 12: Approximate Nearest Neighbor Search
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

In this section we will review ideas from [1] and [2]. We define a family H of functions as (r1, r2, p1, p2)-
sensitive if:

||x− y|| < r1 → Pr
h∼H

(h(x) = h(y)) > p1

||x− y|| > r2 → Pr
h∼H

(h(x) = h(y)) < p2

This is only meaningful if r1 < r2 and p1 > p2. Which means that if x and y are “close” then the probability
that they hash to the same value is at least something, but if they are further away then it is smaller. Or,
the probability of points being hashed to the same value decreases with their distance.

Let us assume such functions exist and give some intuition on how to use them. First we concatenate
k different hash functions from H to construct a new hash function g(x) = [h1(x), . . . , hk(x)]. We choose k
such that Pr(g(x) = g(y)) ≤ 1/n if ||x − y|| > r2. Using the (r1, r2, p1, p2)-sensitivity of H we will get that
if ||x− y|| < r1 then Pr(g(x) = g(y)) ≥ 1/nρ for some ρ < 1.

Now, if we generate ` = nρ different copies of g, g1, . . . , g`, and consider every x in the data for which
gi(x) = gi(q) we will find every close point x with constant probability and consider only O(nρ) far points.

Let us make this statement more precise. The preprocessing step is so.

1. ρ← log(1/p1)/ log(1/p2)

2. `← nρ

3. k ← log(n)/log(1/p2)

4. for `′ ∈ {1, . . . , `}

5. g`′ ← [h1(x), . . . , hk(x)]

6. for x ∈ X

7. for `′ ∈ {1, . . . , `}

8. add x to T`′(g`′(x))

The search stage is as follows:

1. S ← ∅

2. for `′ ∈ {1, . . . , `}

3. add T`′(g`′(x))) to S

4. if |S| ≤ 2nρ

5. for x′ ∈ S
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6. if ||x′ − q|| ≤ r2

7. return x′

Fact 0.1. the number of points x such that ||x− q|| ≥ r2 and x ∈ S is smaller that 2 · nρ with probability at
least 1/2.

Proof. x ∈ S is for some `′ we have g`′(q) = g`′(x) for x such that ||x−q|| > r2 this happens with probability

p
log(n)/log(1/p2)
2 = 1/n. Thus, the expected total number of such points x is 1. Since we have ` = nρ different
g functions the total expected number of such points is nρ. Due to the above and Markov’s inequality
Pr[|S| > 2nρ] ≤ Pr[|S| > 2E[|S|]] ≤ 1/2.

Fact 0.2. If ||x− q|| ≤ r1 then with constant probability x ∈ S

Proof. By the (r1, r2, p1, p2)-sensitivity of H

Pr[g(x) = g(q)] ≥ pk1 = p
log(n)/ log(1/p2)
1 = n− log(1/p1)/ log(1/p2) = n−ρ

Since we repeat this ` = nρ times independently, we have that g`′(x) 6= g`′(q) for all `′ with probability at
most (1− n−ρ)nρ < e−1

Thus, both events happen with probability at least 1− 1/2− e−1 = const. We can duplicate the entire
data structure O(log(1/δ)) time to achieve success probability 1 − δ in the cost of an O(log(1/δ)) factor in
data storage and search time. This means that the searching running time is O(dnρ).

1 LSH functions

1.1 {0, 1}d with the Hamming distance

The humming distance between points are x, y ∈ {0, 1}d is defined as the number of coordinates for which x
and y defer. We claim that choosing a random coordinate from each vector is a local sensitive function and
examine its parameters.

Fact 1.1. let H be a family of d functions for which hi(x) = xi. Then, H is (r, (1 + ε)r, 1− r
d , 1−

(1+ε)r
d )-

sensitive.

Fact 1.2. If r ≤ d/ log(n) then ρ = log(1/p1)/ log(1/p2) ≤ 1/(1 + ε)

Proof. See Fact 3 in [2]. Moreover, assuming r ≤ d/ log(n) is harmless since we can always extend each
vector by d log(n) zeros which does not change their distances and guaranties that r ≤ d/ log(n).

Remark 1.1. This results is also applicable to the Euclidian distance setting because it is possible to map

`d2 into `
O(d)
1 and also trivially possible to map `d1 = {0, 1}O(d/ε) with distortion ε for bounded valued vectors.

Thus, the running time of O(nρ) is in fact O(n1/(1+ε)). In other words, to find a the closest neighbor up
to a factor of 2 in this distance is possible while examining only O(

√
n) data points. This, however, does

not achieve the bound of O(poly(d, log(n))).

1.2 Searching with similarities

Note that in the above we never used the fact that the distance function is a metric. Indeed, it is possible
to search though items as long as we can produce a local sensitive hashing. In [1] Charikar defined Local
sensitive hashing as:

Pr
h

[h(x) = h(y)] = sim(x, y)
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For example, let x and y be sets of items. Their set similarity can be defined as |x∩y||x∪y| . Here we can use

a famous trick. We will map h(x) → arg minxi∈x g(xi) when g is a random permutation over the entire
universe or a random function into [0, 1] for example. The reason this holds true is because the minimal
value of g in |x∪ y| might accidentally be also in |x∩ y| but since the distribution is uniform, the probability

of this event is |x∩y||x∪y| .

1.3 LSH for points in Sd−1

The set of unit length vectors in Rd is called the d dimensional unit sphere and is denoted by Sd−1 (the power
is d− 1 to denote that it is actually a d− 1 dimensional manifold. Do not be confused, the points are still in
Rd) For these points, we can define the distance as the angle between the vectors d(x, y) = cos−1(xT y). We
can thus define a hash function h(x) = sign(uTx) for a vector u chosen uniformly at random from Sd−1. It
is immediate to show that h is local sensitive to the angular distance with parameters similar to the previous
subsection.
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