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Abstract

This paper provides a one-line proof of Frequent Di-
rections (FD) for sketching streams of matrices. It
simplifies the main results in [1] and [2]. The sim-
pler proof arises from sketching the covariance of the
stream of matrices rather than the stream itself.

Introduction

Let X; € R™ be a stream of matrices. Let

= Zthl X, X! € R4 be their covariance ma-
trix. Frequent Directions [1] maintains a rank defi-
cient approximate covariance matrix C; € RI*d yg-
ing Algorithm 1. Set Cp € R4 to be the all ze-
ros matrix. Then, at time ¢t = 1,...,T compute
C, = UPDATE(C‘t_l,Xt,E).

Algorithm 1 Frequent Directions (FD) Update

1: function UPD@TE(C’t_l,Xt,Z)

2: U AU —Ct 1+XtX

3 return C; = U -max(A —I-\,,0)-U”
4: end function

Above, UAUFP is the eigen-decomposition of
C’tfl —&-XtXtT and )\z is the its £'th largest eigenvalue.
Note that the rank of C; is at most £ — 1 for all ¢
by construction. It can therefore be stored in O(df)
space. Assuming n; < ¢, the update operation itself
also consumes at most O(d{) space.

Lemma 1 (simplified from [2] and [1]). Let C' denote
the approximated covariance produced by FD and \;
be the eigenvalues of the exact covariance C' in de-
scending order. For any £ and simultaneously for all
k < ¢ we have
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Short proof Lemma 1

Then Z?:l At =

C — C where C

Define At = Xt — Ct + Ct 1-
Zt:l XtXtT thl(ot - thl) =
stands for C’T, the final sketch.

Moreover, note that the top ¢ eigenvalues of A; are
all equal to one another because Ay = Uy - min(A¢, I
M) - UF. As a result [|A]] < 7 tr(PeAPy) for
any projection P, having a null space of dimension
at most k. Specifically, this holds for P, whose null
space contains the eigenvectors of C' corresponding to
its largest eigenvalues.
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Here we used that tr(P,C'P;) > 0 because C (and

therefore PyC Py) is positive semidefinite. This com-
pletes the proof.
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