
Data mining: lecture 4

Edo liberty

Count Sketches

Here we will define a data structure called a CountSketch. It will allow us to
estimate the number of times the most frequent elements in a stream appeared.

We we denote the elements by o1, . . . , om having each appeared n1 ≥ . . . ≥
nm (the names of the elements are ordered according to their frequency). Before
describing the CountSketch structure, let us first analyze one of its building
blocks. For lack of a more creative name, we will call it B. B is an array of
length b which is associated with two hash functions: h : o → [1, . . . , b] and
s : o → [−1, 1].

We define two function for B one for adding elements into it.

1. define Add(o):

2. B[h(o)] = B[h(o)] + s(o).

and one for returning an estimate for ni given oi

1. define Query(o):

2. return B[h(o)]s(o).

In order to compute the expectation of B[h(o)]s(o) we need to define the
“inverse” of h. Let h−1(oi) = {oj |h(oj) = h(oi)}. In words, h−1(oi) is the set of
all elements for h(oi) = h(oj). Since each element in oj ∈ h−1(oi) is encountered
exactly nj times and for each of those s(oj) is added to B[h(o)] we have that
B[h(oi)] =

∑

oj∈h−1(oi)
njs(oj).

E[B[h(oi)]s(oi)] =
∑

oj∈h−1(oi)

njs(oj)s(oi) = ni+
∑

oj∈h−1(oi),oi 6=oj

njs(oj)s(oi) = ni

First, we see that if b > 8k we have that |h−1(oi) ∩ {o1, . . . , ok}| = 0 with
probability at least 7/8. In other words, the element oi does not map under h to
the same cell in B with any of the top k frequency items. We will define h−1

>k =
h−1(oi) ∩ {ok+1, . . . , om}. We will assume from this point on that h−1(oi) ⊂
{ok+1, . . . , om} or in other words that h−1

>k = h−1(oi).

1

Now, let us bound the variance of B[h(oi)]s(oi).

V ar(B[h(oi)]s(oi)) ≤ E[B[h(oi)]
2s(oi)

2]

= E[(
∑

oj∈h
−1

>k
(oi)

njs(oj))(
∑

oj′∈h
−1

>k
(oi)

nj′s(oj′))]

= Eh

∑

oj∈h
−1

>k
(oi)

∑

oj′∈h
−1

>k
(oi)

Es[njnj′s(oj)s(oj′)]

= Eh

∑

oj∈h
−1

>k
(oi)

n2
j

=

m
∑

j=k+1

n2
j/b

Note that we have both an expectation over the choice of the hash function s
and over the hash function h.

Using this bound on the variance of B[h(oi)]s(oi) and Chebyshev’s inequality
we attain that:

Pr

|B[h(oi)]s(oi)− ni| >

√

√

√

√8

m
∑

j=k+1

n2
j/b

 ≤ 1/8

However, note that we also demanded that none of the top k elements map
to the same cell as oi which only happened with probability 7/8. Using the
union bound on these two events we get:

Pr [|n̂i − ni| ≤ γ] ≥ 3/4

where we denote n̂i = B[h(oi)]s(oi) and γ =
√

8
∑m

j=k+1 n
2
j/b.

Note that this happens for every elements individually only with constant
probability. We would like to get that this holds with probability 1 − δ for all
elements simultaneously. We do that by repeating this entire structure t times
creating the CountSketch B1, . . . , Bt. When inserting an element we insert it
into all t arrays Bi and above. When querying the CountSketch we return
query(oi) = Median(n̂1

i , . . . , n̂
t
i) where n̂ℓ

i is the estimator n̂i from Bℓ.
Because Pr [|n̂i − ni| ≤ γ] ≥ 3/4 we get from Chernoff’s inequality that at

least half the values n̂ℓ
i will be such that

∣

∣n̂ℓ
i − ni

∣

∣ ≤ γ (including the median)
for all m elements with probability at least 1− δ for t ∈ O(log(m/δ)).

The only thing left to do is set the correct value for b (the length of B). We
will demand that γ ≤ ǫnk. This gives b ≥ 8

∑m

i=k+1 n
2
i /ε

2n2
k. Therefore, for

t = O(log(m/δ)) and b ≥ 8max(k,

∑

m

i=k+1
n2
i

ε2n2
k

) with probability at least 1− δ for

each element in the stream |n̂i − ni| ≤ εnk.
The algorithm for finding the most frequent items is therefore to go over

the stream and keep a CountSketch of all the elements seen this far. When we

2

process an element, we also estimate it’s frequency n̂ an keep the top k most
frequent items in estimated frequencies. These are guaranteed to to contain all
elements oi for which ni > (1 + 2ε)nk and not to contain any element oi for
which ni < (1 − 2ε)nk.

3

