Data mining: lecture 4

Edo liberty

Count Sketches

Here we will define a data structure called a CountSketch. It will allow us to
estimate the number of times the most frequent elements in a stream appeared.

We we denote the elements by o4, ..., 0, having each appeared ny > ... >
N (the names of the elements are ordered according to their frequency). Before
describing the CountSketch structure, let us first analyze one of its building
blocks. For lack of a more creative name, we will call it B. B is an array of
length b which is associated with two hash functions: h : 0 — [1,...,b] and
s:o0—[-1,1].

We define two function for B one for adding elements into it.

1. define Add(o):
2. B[h(0)] = Blh(0)] + s(0).
and one for returning an estimate for n; given o;
1. define Query(o):
2. return B[h(o)]s(0).

In order to compute the expectation of B[h(o)]s(o) we need to define the
“inverse” of h. Let h=1(0;) = {0j|h(0;) = h(0;)}. In words, h=1(0;) is the set of
all elements for h(o;) = h(o;). Since each element in 0; € h='(0;) is encountered
exactly n; times and for each of those s(o;) is added to B[h(0)] we have that

B[h(oz)] = Zoj'ehfl(oi) an(Oj).

E[B[h(o)ls(0)] = > nys(o;)s(o;) = ni+ > n;s(0;)s(0i) = n;

0;€R=1(0;) 0;€h=1(0;),0i#0;

First, we see that if b > 8k we have that |h=1(0o;) N {o1,...,0r}| = 0 with

probability at least 7/8. In other words, the element o; does not map under A to
the same cell in B with any of the top k frequency items. We will define h;,lC =
h=(0;) N {ok+1,---,0m}. We will assume from this point on that h=!(o;) C

{Ok41,-..,0m} or in other words that hZ; = h™*(o;).

Now, let us bound the variance of B[h(0;)]s(0;).
Var(Blh(o)]s(o)) < EIBh(o)]s(01)?)
= Bl >, nso) >, nys(op))
0;€LT; (04) 0j1€hZ; (01)

= B, Y, > Ednynjs(oj)s(oj)]

0j Gh;i(oi) 01 Gh;i(oi)

—nY
Oth;i(Oi)
= >

j=k+1

Note that we have both an expectation over the choice of the hash function s
and over the hash function h.

Using this bound on the variance of B[h(0;)]s(0;) and Chebyshev’s inequality
we attain that:

8 > bl <1/8

j=k+1

Pr ||B[h(0:)]s(0:) — ng| >

However, note that we also demanded that none of the top k elements map
to the same cell as o; which only happened with probability 7/8. Using the
union bound on these two events we get:

Pr(|f; —ni| <~] = 3/4

where we denote 7; = B[h(0;)]s(0;) and v = /837", | n?/b.

Note that this happens for every elements individually only with constant
probability. We would like to get that this holds with probability 1 — ¢ for all
elements simultaneously. We do that by repeating this entire structure ¢ times

creating the CountSketch By, ..., B;. When inserting an element we insert it
into all ¢ arrays B; and above. When querying the CountSketch we return
query(o;) = Median(n}, ..., nt) where A¢ is the estimator 7; from By.

Because Pr[|7n; — n;| <] > 3/4 we get from Chernoff’s inequality that at
least half the values Af will be such that |Af —n;| < v (including the median)
for all m elements with probability at least 1 — ¢ for ¢t € O(log(m/9)).

The only thing left to do is set the correct value for b (the length of B). We
will demand that v < eng. This gives b > 8221«#1 nf/sQni. Therefore, for

m 2
t = O(log(m/6)) and b > 8 max(k, %ﬁn) with probability at least 1—¢ for
k
each element in the stream |n; — n;| < eng.
The algorithm for finding the most frequent items is therefore to go over
the stream and keep a CountSketch of all the elements seen this far. When we

process an element, we also estimate it’s frequency 7 an keep the top k& most
frequent items in estimated frequencies. These are guaranteed to to contain all
elements o; for which n; > (1 + 2¢)n, and not to contain any element o; for
which n; < (1 — 2¢e)ny.

