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Abstract

We consider the problem of analyzing market-basket data
and present several important contributions. First, we present
a new algorithm for finding large itemsets which uses fewer
passes over the data than classic algorithms, and yet uses
fewer candidate itemsets than methods based on sampling.
We investigate the idea of item reordering, which can im-
prove the low-level efficiency of the algorithm. Second, we
present a new way of generating “implication rules,” which
are normalized based on both the antecedent and the con-
sequent and are truly implications (not simply a measure
of co-occurrence), and we show how they produce more in-
tuitive results than other methods. Finally, we show how
different characteristics of real data, as opposed to synthetic
data, can dramatically affect the performance of the system
and the form of the results.

1 Introduction

Within the area of data mining, the problem of deriving as-
sociations from data has recently received a great deal of
attention. The problem was first formulated by Agrawal et
al, [A1S93a, AT393b, AS94, AS95, ALSS95, SA95, MARO96,
Toi96] and is often referred to as the “market-basket” prob-
lem. In this problem, we are given a set of items and a
large collection of transactions which are subsets (baskets)
of these items. The task is to find relationships between the
presence of various items within those baskets.

There are numerous applications of data mining which
fit into this framework. The canonical example from which
the problem gets its name is a supermarket. The items
are products and the baskets are customer purchases at the
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checkout. Determining what products customers are likely
to buy together can be very useful for planning and market-
ing. However, there are many other applications which have
varied data characteristics. For example, student enrollment
in classes, word occurrence in text documents, users’ visits
of web pages, and many more. We applied market-basket
analysis to census data (see section 5).

In this paper, we address both performance and func-
tionality issues of market-basket analysis. We improve per-
formance over past methods by introducing a new algorithm
for finding large itemsets (an important subproblem). We
enhance functionality by introducing ¢mplication rules as an
alternative to association rules (see below).

One very common formalization of this problem is find-
ing association rules which are based on support and con-
fidence. The support of an itemset (a set of items), I, is
the fraction of transactions the itemset occurs in (is a sub-
set of). An itemset is called large if its support exceeds a
given threshold, o. An association rule is written [ — J
where I and J are itemsets !. The confidence of this rule is
the fraction of transactions containing [ that also contain J.
For the association rule, I — J to hold, I U J must be large
and the confidence of the rule must exceed a given confid-
ence threshold, v. In probability terms, we can write this
PH{IuJ}) >0 and P(J|I) > ~.

The existing methods for deriving the rules consist of two
steps:

1. Find the large itemsets for a given o.

2. Construct rules which exceed the confidence threshold
from the large itemsets in step 1. For example, if ABC
is a large itemset we might check the confidence of

AB —» C, AC —» B and BC — A.

In this paper we address both of these tasks, step 1 from
a performance perspective by devising a new algorithm, and
step 2 from a semantic perspective by developing conviction,
an alternative to confidence.

1.1 Algorithms for Finding Large ltemsets

Much research has focussed on deriving efficient algorithms
for finding large itemsets (step 1). The most well-known al-
gorithm is Apriori [AIS93b, AS94] which, as all algorithms
for finding large itemsets, relies on the property that an item-
set can only be large if and only if all of its subsets are large.
It proceeds level-wise. First it counts all the 1-itemsets?

LJ is typically restricted to just one item though it doesn’t have
to be.
2 A k-itemset is an itemset with k items.



and finds counts which exceed the threshold - the large 1-
itemsets. Then it combines those to form candidate (poten-
tially large) 2-itemsets, counts them and determines which
are the large 2-itemsets. It continues by combining the large
2-itemsets to form candidate 3-itemsets, counting them and
determining which are the large 3-itemsets and so forth.

Let Ly be the set of large k-itemsets. For example,
L might contain {{A, B,C},{A, B,D},{A,D,F},...}. Let
C', be the set of candidate k-itemsets; this is always a super-
set of Li. Here is the algorithm:

Result :=
k:=1;
C = set of all 1-itemsets;
while Cj; # 0 do
create a counter for each itemset in Cl;
forall transactions in database do
Increment the counters of itemsets in C}
which occur in the transaction;

Ly := All candidates in Cy

which exceed the support threshold;

Result := Result U Ly;
Cry1 := all k + 1-itemsets

which have all of their k-item subsets in Lj.

k:=k+1;
end

Thus, the algorithm performs as many passes over the
data as the maximum number of elements in a candidate
itemset, checking at pass k the support for each of the can-
didates in Cx. The two important factors which govern per-
formance are the number of passes made over all the data
and the efficiency of those passes.

To address both of those issues we introduce Dynamic
Itemset Counting (DIC), an algorithm which reduces the
number of passes made over the data while keeping the num-
ber of itemsets which are counted in any pass relatively low
as compared to methods based on sampling [T0i96]. The in-
tuition behind DIC is that it works like a train running over
the data with stops at intervals M transactions apart. (M
is a parameter; in our experiments we tried values ranging
from 100 to 10,000.) When the train reaches the end of the
transaction file, it has made one pass over the data and it
starts over at the beginning for the next pass. The “passen-
gers” on the train are itemsets. When an itemset is on the
train, we count its occurrence in the transactions that are
read.

If we consider Apriori in this metaphor, all itemsets must
get on at the start of a pass and get off at the end. The 1-
itemsets take the first pass, the 2-itemsets take the second
pass, and so on (see Figure 1). In DIC, we have the added
flexibility of allowing itemsets to get on at any stop as long
as they get off at the same stop the next time the train goes
around. Therefore, the itemset has “seen” all the transac-
tions in the file. This means that we can start counting an
itemset as soon as we suspect it may be necessary to count
it instead of waiting until the end of the previous pass.

For example, if we are mining 40,000 transactions and
M = 10,000, we will count all the 1-itemsets in the first
40,000 transactions we will read. However, we will begin
counting 2-itemsets after the first 10,000 transactions have
been read. We will begin counting 3-itemsets after 20,000
transactions. For now, we assume there are no 4-itemsets
we need to count. Once we get to the end of the file, we
will stop counting the 1-itemsets and go back to the start of
the file to count the 2 and 3-itemsets. After the first 10,000

transactions, we will finish counting the 2-itemsets and after
20,000 transactions, we will finish counting the 3-itemsets.
In total, we have made 1.5 passes over the data instead of
the 3 passes a level-wise algorithm would make.?

DIC addresses the high-level issues of when to count
which itemsets and is a substantial speedup over Apriori,
particularly when Apriori requires many passes. We deal
with the low-level issue of how to increment the appropriate
counters for each transaction in Section 3 by considering the
sort order of items in our data structure.

1.2 Implication Rules

Our contribution to functionality in market basket analysis
is tmplication rules based on conviction, which we believe
is a more useful and intuitive measure than confidence and
interest (see discussion in Section 4). Unlike confidence,
conviction is normalized based on both the antecedent and
the consequent of the rule like the statistical notion of cor-
relation. Furthermore, unlike interest, it is directional and
measures actual implication as opposed to co-occurrence.
Because of these two features, implication rules can pro-
duce useful and intuitive results on a wide variety of data.
For example, the rule past active duty in military = no ser-
vice in Vietnam has a very high confidence of 0.9. Yet it is
clearly misleading since having past military service only in-
creases the chances of having served in Vietnam. In tests on
census data, the advantages of conviction over rules based
on confidence or interest are evident.

In Section 5, we present the results of generating implica-
tion rules for U.S. census data from the 1990 census. Census
data is considerably more difficult to mine than supermar-
ket data and the performance advantages of DIC for finding
large itemsets are particularly useful.

2 Counting Large Itemsets

[temsets form a large lattice with the empty itemset at the
bottom and the set of all items at the top (see example,
figure 2). Some itemsets are large (denoted by boxes), and
the rest are small. Thus, in the example, the empty itemset,
A,B,C,D,AB,AC, BC,BD,CD, ABC are large.

To show that the itemsets are large we can count them.
In fact, we must, since we generally want to know the counts.
However, it is infeasible to count all of the small itemsets.
Fortunately, it is sufficient to count just the minimal ones
(the itemsets that do not include any other small itemsets)
since if an itemset is small, all of its supersets are small too.
The minimal small itemsets are denoted by circles; in our
example AD and BCD are minimal small. They form the
top side of the boundary between the large and small itemsets
(Toivonen calls this the negative boundary; in lattice theory
the minimal small itemsets are called the prime implicants).

An algorithm which counts all the large itemsets must
find and count all of the large itemsets and the minimal small
itemsets (that is, all of the boxes and circles). The DIC
algorithm, described here, marks itemsets in four different
possible ways:

e Solid box - confirmed large itemset - an itemset we have
finished counting that exceeds the support threshold.

30f course in this example we assumed best of all possible circum-
stances where we estimated correctly exactly which 2 and 3-itemsets
we would have to count. More realistically, some itemsets would be ad-
ded alittle later. Nonetheless there would still be considerable savings.
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Figure 1: Apriori and DIC
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Figure 2: An itemsets lattice.

e Solid circle - confirmed small itemset - an itemset we
have finished counting that is below the support threshold.

e Dashed box - suspected large itemset - an itemset we
are still counting that exceeds the support threshold.

e Dashed circle - suspected small itemset - an itemset we
are still counting that is below the support threshold.

The DIC algorithm works as follows:

1. The empty itemset is marked with a solid box. All the
1-itemsets are marked with dashed circles. All other
itemsets are unmarked. (See Figure 3.)

2. Read M transactions. We experimented with values
of M ranging from 100 to 10,000. For each transac-
tion, increment the respective counters for the itemsets
marked with dashes. See section 3.

3. If a dashed circle has a count that exceeds the support
threshold, turn it into a dashed square. If any imme-
diate superset of it has all of its subsets as solid or
dashed squares, add a new counter for it and make it
a dashed circle. (See Figures 4 and 5.)

4. If a dashed itemset has been counted through all the
transactions, make it solid and stop counting it.

5. If we are at the end of the transaction file, rewind to
the beginning. (See Figure 6.)
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Figure 3: Start of DIC algorithm.

Figure 5: After 2M transactions.

6. If any dashed itemsets remain, go to step 2.

This way DIC starts counting just the 1-itemsets and
then quickly adds counters 2,3,4,... k-itemsets. After just
a few passes over the data (usually less than two for small
values of M) it finishes counting all the itemsets. Ideally,
we would want M to be as small as possible so we can start
counting itemsets very early in step 3. However, steps 3 and
4 incur considerable overhead so we do not reduce M below
100.

2.1 The Data Structure

The implementation of the DIC algorithm requires a data
structure which can keep track of many itemsets. In partic-
ular, it must support the following operations:

1. Add new itemsets.

2. Maintain a counter for every itemset. When transac-
tions are read, increment the counters of those active

Figure 4: After M transactions.
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Figure 6: After one pass.

itemsets which occur in the transaction. This must be
very fast as it is the bottleneck of the whole process.
We attempt to optimize this operation in Section 3.

3. Maintain itemset states by managing transitions from
active to counted (dashed to solid) and from small to
large (circle to square). Detect when these transitions
should occur.

4. When itemsets do become large, determine what new
itemsets should be added as dashed circles since they
could now potentially be large.

The data structure used for this is exactly like the hash
tree used in Apriori with a little extra information stored at
each node. It is a trie with the following properties. Each
itemset is sorted by its items (the sort order is discussed in
Section 3). Every itemset we are counting or have counted
has a node associated with it, as do all of its prefixes. The
empty itemset is the root node. All the l-itemsets are at-
tached to the root node, and their branches are labeled by the
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Figure 7: Hash Tree Data Structure

item they represent. All other itemsets are attached to their
prefix containing all but their last item. They are labeled by
that last item. Figure 7 shows a sample trie of this form. The
dotted path represents the traversal which is made through
the trie when the transaction ABC is encountered so A, AB,
ABC, AC, B, BC, and C must be incremented and they are,
in that order. The exact algorithm for this is described in
Section 3.

Every node stores the last item in the itemset it repres-
ents, a counter, a marker as to where in the file we started
counting it, its state, and its branches if it is an interior node.

2.2 Significance of DIC

There are a number of benefits to DIC. The main one is
performance. If the data is fairly homogeneous throughout
the file and the interval M is reasonably small, this algorithm
generally makes on the order of two passes. This makes the
algorithm considerably faster than Apriori which must make
as many passes as the maximum size of a candidate itemset.
If the data is not fairly homogeneous, we can run through it
in a random order (section 2.3).

Some important relevant work was done by Toivonen
using sampling [Toi96]. His technique was to sample the
data using a reduced threshold for safety, and then count

the necessary itemsets over the whole data in just one pass.
However, this pays the added penalty of having to count
more itemsets due to the reduced threshold. This can be
quite costly, particularly for datasets like the census data
(see section 5). Instead of being conservative, our algorithm
bravely marches on, on the assumption that it will later come
back to anything missed with little penalty.?

Besides performance, DIC provides considerable flexibil-
ity by having the ability to add and delete counted itemsets
on the fly. As a result, DIC can be extended to parallel and
incremental update versions (see section 6.1.1).

2.3 Non-homogeneous Data

One weakness of DIC is that it is sensitive to how homogen-
eous the data is. In particular, if the data is very correlated,
we may not realize that an itemset is actually large until
we have counted it in most of the database. If this hap-
pens, then we will not shift our hypothetical boundary and
start counting some of the itemset’s supersets until we have
almost finished counting the itemset. As it turns out, the
census data we used is ordered by census district and ex-
actly this problem occurs. To test the impact of this effect,
we randomized the order of the transactions and re-ran DIC.
It turned out to make a significant difference in performance
(see Section 5). The cost associated with randomizing trans-
action order is small compared to the mining cost.

However, randomization may be impractical. For ex-
ample, it may be expensive, the data may be stored on tape,
or there might be insufficient space to store the random-
ized version. We considered several ways of addressing this
problem:

e Virtually randomize the data. That is, visit the file in
a random order while making sure that every pass is
in the same order. This can incur a high seek cost,
especially if the data is on tape. In this case, it may be
sufficient to jump to a new location every few thousand
transactions or so.

e Slacken the support threshold. First, start with a sup-
port threshold considerably lower than the given one.
Then, gradually increase the threshold to the desired
level. This way, the algorithm begins fairly conservat-
ive and then becomes more confident as more data is
collected. We experimented with this technique some-
what but with little success. However, perhaps more
careful control of the slack or a different dataset would
make this a useful technique.

e One thing to note is that if the data is correlated with
its location in the file, it may be useful to detect this
and report it. This is possible if a “local” counter is
kept along with each itemset which measures the count
of the current interval. At the end of each interval it
can be checked for considerable discrepancies with its
overall support in the whole data set.

The DIC algorithm addresses the high-level strategy of
what itemsets to count when. There are also lower level
performance issues as to how to increment the appropriate
counters for a particular transaction. We address these in
section 3.

4We did not have time to implement and test Toivonen’s algorithm
as compared to ours. However, based on tests with lowered support
thresholds, we suspect that DIC is quite competitive.



¢ 7
A 6
AB 5
B 5
4
4

Table 1: Increment Cost for ABCDEFG

“ABC, AC, AD, BCD, BD, CD, D, E, F, and G
cost 0 since they are leaves.

¢ 7
A 3
AB 2
B 2
BC 1
C 1

Table 2: Increment Cost for EFGABCD

3 Item Reordering

The low-level problem of how to increment the appropriate
counters for a given transaction is an interesting one in itself.
Recall that the data structure we use is a trie structure much
like that used in Apriori (see section 2.1). Given a collection
of itemsets, the form of this structure is heavily dependent
on the sort order of the items. Note that in our sample data
structure (figure 7), the order of the items was A,B,C,D.
Because of this, A occurs only once in the trie while D occurs
five times.

To determine how to optimize the order of the items, it
is important to understand how the counter incrementing
process works. We are given a transaction, S (with items
S[0]...S[n]), in a certain order. To increment the appropri-
ate counters we do the following, starting at the root node of
the trie 7"

Increment(T,S) {
/* Increment this node’s counter */
T.counter++;
If T is not a leaf then forall z, 0 < < n:
/* Increment branches as necessary */

If T.branches[S[i]] exists:

Then Increment(T.branches[S[i]], S[i+1..n])

Return. }

Therefore, the cost of running this subroutine is equal to:

Z n — Index(Last(1),S)

I

where I ranges over non-leaf itemsets in T' which occur in
S, and n — Index(Last(I),S) is the number of items left in
S after the last element of /. These items will be checked
in the inner loop. Therefore, it is advantageous to have the
items which occur in many itemsets to be last in the sort
order of the items (so few items will be left after them) and
the items which occur in few itemsets to be first.

For example, consider the structure in figure 7. Suppose
there are also items E,F, and G, and we add their respective
1-itemsets to the data structure. There will now be three
singletons hanging off the tree. If we insert ABCDEFG, the

cost of the insert is 31 (see Table 3). However, if we change
the order of the items to EFGABCD (note the tree structure
remains the same since A,B,C,D did not change order), the
cost becomes 16 (see Table 3).

This is considerably cheaper. Therefore what we want is
to order the items by the inverse of their popularity in the
counted non-leaf itemsets. A reasonable approximation for
this inverse is the inverse of their popularity in the first M
transactions. Since during the first interval of transactions
we are counting only 1-itemsets, there is not yet a tree struc-
ture which depends on the order. After the first M trans-
actions, we change the order of the items and build the tree
from there. Future transactions must be resorted according
to the new ordering. This technique incurs some overhead
due to the re-sorting, but for some data it can be beneficial
overall.

4 Implication rules

Some traditional measures of “interestingness” have been
support combined with either confidence or interest. Con-
sider these measures from a probabilistic model.

Let {A, B} be an itemset. Then the support is P({A, B})
which we write P(A, B). This is used to make sure that the
items this rule applies to actually occur frequently enough
for someone to care. It also makes the task computationally
feasible by limiting the size of the result set, and is usually
used in conjunction with other measures. The confidence of
A = Bis P(B | A), the conditional probability of B given
A, which is equal to P(A,B)/P(A). It has the flaw that
it ignores P(B). For example, P(A, B)/P(A) could equal
P(B) (i.e. the occurrence of B is unrelated to A) and could
still be high enough to make the rule hold. For example,
if people buy milk 80% of the time in a supermarket and
the purchase of milk is completely unrelated to the purchase
of smoked salmon, then the confidence of salmon = milk is
still 80%. This confidence is quite high, and therefore would
generate a rule. This is a key weakness of confidence, and
is particularly evident in census data, where many items are
very likely to occur with or without other items.

The interestof A, B is defined as P(A, B)/P(A)P(B) and
factors in both P(A) and P(B); essentially it is a measure
of departure from independence. However, it only measures
co-occurrence not implication, in that it is completely sym-
metric.

To fill the gap, we define convictionas P(A)P(—B)/P(A,—B).

The intuition as to why this is useful is: logically, A — B
can be rewritten as =(A A =B) so we see how far A A =B
deviates from independence, and invert the ratio to take care
of the outside negation °. We believe this concept is useful
for a number of reasons:

¢ Unlike confidence, conviction factors in both P(A) and
P(B) and always has a value of 1 when the relev-
ant items are completely unrelated like the salmon and
milk example above.

o Unlike interest, rules which hold 100% of the time, like
Vietnam veteran = more than five years old have the
highest possible conviction value of oco. Confidence
also has this property in that these rules have a confid-
ence of 1. However, interest does not have this useful
property. For example, if 5% of people are Vietnam

5In practice we do not invert the ratio; instead we search for low
values of the uninverted ratio. This way we do not have to deal with
infinities.



veterans and 90% are more than five years old, we
get interest = 0.05/(0.05) * 0.09 = 1.11 which is only
slightly above 1 (the interest for completely independ-
ent items).

In short, conviction is truly a measure of implication be-
cause it is directional, it is maximal for perfect implications,
and it properly takes into account both P(A) and P(B).

5 Results

We tested the DIC algorithm along with reordering on two
different types of data: synthetic data generated by the IBM
test data generator ° and U.S. census data. We also tested
implication rules on both sets of data but the results of these
tests are only interesting on the census data. This is because
the synthetic data is designed to test association rules based
on support and confidence. Also, the rules generated are
only interesting and can be evaluated for utility if the items
involved have some actual meaning. Overall, the results of
tests on both sets of data justified DIC, and tests on the
census data justified implication rules.

5.1 Test Data

The synthetic test data generator is well documented in [AS94]
and it was very convenient to use. We used 100,000 trans-
actions, with an average size of 20 items chosen from 1000
items, and average large itemsets were of size 4.

The census data was a bit more challenging. We chose to
look at PUMS files which are Public Use Microdata Samples.
They contain actual census entries which constitute a five
percent sample of the state the file represents. In our tests
we used the PUMS file for Washington D.C. which consists
of roughly 30,000 entries. Each entry has 127 attributes,
each of which is represented as a decimal number. For ex-
ample, the SEX field uses one digit - 0 for male and 1 for
female. The INCOME field uses six digits - the actual dollar
value of that person’s income for the year. We selected 73 of
these attributes to study and took all possible (field,value)
pairs. For the numerical attributes, like INCOME, we took
the logarithm of the value and rounded it to the nearest in-
teger to reduce the number of possible answers”. In total
this yielded 2166 different items.

This data has several important differences from the syn-
thetic data. First, it is considerably wider - 73 versus 20
items per transaction. Second, many of the items are ex-
tremely popular, such as worked in 1989. Third, the en-
tire itemset structure is far more complex than that of syn-
thetic data because correlations can be directional (for ex-
ample given birth to 2 children = Female but the reverse
is not true), many rules are true 100% of the time (same
example), and almost all attributes are correlated to some
degree. These factors make mining census data considerably
more difficult than supermarket style data.

5.2 Test Implementations

We implemented DIC and Apriori in C++ on several differ-
ent Unix platforms. The implementations were mostly the
same since Apriori can be thought of as a special case of DIC
- the case where the interval size, was the size of the datafile,

Shttp://waw.almaden.ibm.com/cs/quest/syndata.html

"There has been much work done on bucketizing numerical para-
meters. However this is not the focus of our research so we took a
simple approach.
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Figure 9: Performance of Apriori and DIC on Census Data

not M. Note that much work has been done on Apriori in
recent years to optimize it and it was impossible for us to
perform all of those optimizations. However, almost all of
these optimizations are equally applicable to DIC.

5.3 Relative Performance of DIC and Apriori

Both DIC and Apriori were run on the synthetic data and
census data. Running both algorithms on the synthetic data
was fairly straightforward. We tried a range of support val-
ues and produced large itemsets relatively easily (figure 8).
Apriori beat out DIC by about 30% on the high support
end of the graph but DIC outperformed Apriori in most
tests, running 30% faster at a support threshold of 0.005.
However, running both DIC and Apriori on census data was
tricky. This is because a number of items in the census data
appeared over 95% of the time and therefore there were a
huge number of large itemsets. To address this problem,
items with over 80% support were dropped. There were still
a fair number of large itemsets but manageable at very high
support thresholds. The reader will notice that the tests
were run on support levels between 36% and 50% which are
more than an order of magnitude higher than support levels

0.36
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used for supermarket analysis. Otherwise, far too many
large itemsets would be generated. Even at the 36% support
threshold, mining proved time consuming, taking nearly half
an hour on just 30,000 records.

5.3.1 Performance on the Census Data

There are several reasons why mining the census data is
so much more difficult than the synthetic data. The census
data is 3.5 times wider than the synthetic data. So if we
were counting all 2-itemsets, it would take 12 times longer
per transaction (there are 12 times as many pairs in each
row of the census data). If we were counting all 3-itemsets
it would take 40 times longer; 4-itemsets would take 150
times longer. Of course we are not counting all the 2,3, or 4-
itemsets; however, we are counting many of them, and we are
counting higher cardinality itemsets as well. Furthermore,
even after taking out the items which have more than 80%
support, we are still left with many popular items, such as
works 40 hours/week. These tend to combine to form many
long itemsets.

The performance graphs show three curves (figure 9).
One for Apriori, one for DIC, and one for DIC when we
shuffled the order of the transactions beforehand (this has
no effect on Apriori). For both tests with DIC, M was
10,000. The results clearly showed that DIC runs notice-
ably faster than Apriori and randomized DIC runs noticeably
faster than DIC. For the support level of 0.36, randomized
DIC ran 3.2 times faster than Apriori. By varying the value
of M, we achieved slightly higher speedups - 3.3 times faster
for support of 0.36 and 3.7 times faster for 0.38 (see next
section).

5.4 Varying the Interval Size

One experiment we tried was to find the optimal value of
M, the interval size (Figure 10). We tried values of 100,
300, 1000, and 10000 for M. The values in the middle of
the range, 300 and 1000, worked the best, coming in second
and first respectively. An interval size of 100 proved the
worst choice due to too much overhead incurred. A value of
10,000 was somewhat slow because it took more passes over
the data than for lower interval values.
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Figure 11: Performance With and Without Item Reordering

We also tried varying M for non-randomized data. These
experiments failed miserably and we were not able to com-
plete them. In terms of the number of passes, at a sup-
port threshold of 0.36, Apriori made 10 passes over the data;
simple DIC made 9 with an M of 10,000; randomized DIC
made 4, 2.1, 1.3, and 1.3 passes for values of M of 10000,
1000, 300, and 100 respectively. This shows that DIC when
combined with randomization and a sufficiently low M, does
indeed finish in a very small number of passes.

5.5 Effect of Item Reordering

[tem reordering was not nearly as successful as we had hoped.
It made a small difference in some tests but overall played
a negligible role in performance. In tests on census data it
made less than 10% difference, sometimes in the wrong dir-
ection (Figure 11). This was something of a disappointment,
but perhaps a better analysis of what the optimal order is
and on-the-fly modification will yield better results.

5.6 Tests of Implication Rules

It is very difficult to quantify how well implication rules
work. Due to the high support threshold, we considered
rules based on the minimal small itemsets as well as the
large itemsets. In total there were 23712 rules with con-
viction > 1.25 of which 6732 had a conviction of co. From
these, we learned that five year olds don’t work, unemployed
residents don’t earn income from work, men don’t give birth,
and many other interesting facts. Looking down the list to
a conviction level of 50, we find that those who are not in
the military, are not looking for work, and had work this
year (1990, the year of the census), are currently employed
as civilians. We list some sample rules in Table 3. Note that
one problem was that many rules were very long (involving
say seven items) and were too complicated to be interesting.
Therefore, we list some of the shorter ones.

By comparison, tests with confidence produced some mis-
leading results. For example, the confidence of women who
do not state whether they are looking for a job do not have
personal care limitations was 73% which is at the high end
of the scale. However, it turned out that this was simply
because 76% of all respondents do not have personal care

0.36



conviction | implication rule

o0

five year olds don’t work

o0

unemployed people don’t earn income from work

o0

men don’t give birth

50

people who are not in the military and are not looking for work
and had work this year (1990, the year of the census) currently
have civilian employment

10

people who are not in the military and who worked last week
are not limited in their work by a disability

2.94

heads of household do not have personal care limitations

people not 1n school and without personal care Timitations have

L5 worked this year

1.4 | African-American women are not in the military

1.28 | African-Americans reside in the same state they were born

1.28 | unmarried people have moved in the past five years

Table 3: Sample Implication Rules From Census Data

limitations.

Interest also produced less useful results. For example,
the interest of male and never given birth is 1.83 which is
considerably lower than very many itemsets which we would
consider less related and appears 40% of the way down in
the list of rules with interest greater than 1.25.

6 Conclusions

6.1 Finding Large Itemsets

We found that the DIC algorithm, particularly when com-
bined with randomization provided a significant perform-
ance boost for finding large itemsets. Item reordering did
not work as well as we had hoped. However in some isolated
earlier tests it seemed to make a big difference. We suspect
that a different method for determining the item ordering
might make this technique useful. Selecting the interval M
made a big difference in performance and warrants more
investigation. In particular, we may consider a varying in-
terval depending on how many itemsets were added at the
last checkpoint.

There are a number of possible extensions to DIC. Be-
cause of its dynamic nature, it is very flexible and can be
adapted to parallel and incremental mining.

6.1.1 Parallelism

The most efficient known way to parallelize finding large
itemsets has been to divide the database among the nodes
and to have each node count all the itemsets for its own data
segment. T'wo key performance issues are load balancing and
synchronization. Using Apriori, it is necessary to wait after
each pass to get the results from all nodes to determine what
the new candidate sets are for the next pass. Since DIC can
dynamically incorporate new itemsets to be added, it is not
necessary to wait. Nodes can proceed to count the itemsets
they suspect are candidates and make adjustments as they
get more results from other nodes.

6.1.2 Incremental Updates

Handling incremental updates involves two things: detecting
when a large itemset becomes small and detecting when a
small itemset becomes large. It is the latter that is more
difficult. If a small itemset becomes large, we may now have

new potentially large itemsets (new prime implicants) which
we must count over the entire data, not just the update.
Therefore, when we determine that a new itemset must be
counted, we must go back and count it over the prefix of the
data that we missed. This is very much like the way DIC
goes back to count the prefixes of itemsets it missed and it
is straightforward to extend DIC in this way.

Another consideration is whether it is more useful to find
the large itemsets over all the data or mine just the recent
data (perhaps on the order of several months which may cor-
respond to many small updates). Recall the train analogy
(Section 1.1). The solution is to have two trains, one reading
current data as it is coming in and incrementing appropriate
counts, and the other reading several months old data and
decrementing the appropriate counts to remove its effects.
In order to do this, it is necessary to be able to add and re-
move itemset counters on the fly, quickly and efficiently, like
DIC handles static data. This extension may be particularly
useful.

6.1.3 Census Data

The census data was particularly challenging. Market basket
analysis techniques had not been designed to deal well with
this kind of data. It was difficult for several reasons (see
section 5.1) - the data was very wide (more than 70 items
per transaction), items were very varied in support (from
very close to 0% to very close to 100%), and there was a
lot to mine (many things were highly correlated). It was
much more difficult to mine than supermarket data which is
much more uniform in many ways. We believe that many
other data sets are similarly challenging to mine and more
work should be done toward handling them efficiently. [t
may be useful to develop some overall measures of difficulty
for market-basket data sets.

6.2 Implication Rules

Looking over the implication rules generated on census data
was educational. First, it was educational because most of
the rules themselves were not. The rules that came out at the
top, were things that were obvious. Perhaps the interesting
things about the rules with a very high conviction value is
why those that are very high are not co. For example, who
are the seven people who earned over $160,000 last year but
are less than 500% over the poverty line?



The most interesting rules were found in the middle of
the range, not extremely high as to be obvious (anything
over 5) but not so low as to be insignificant (around 1.01).
We believe that this is generally true of any data mining
application. The extremely correlated effects are generally
well known and obvious. The truly interesting ones are far
less correlated.

A big problem was the number of rules that were gener-
ated - over 20,000. It is both impossible and unnecessary to
deal with so many rules. We have considered several tech-
niques for pruning them.

e First, one can prune rules which are not minimal. For
example, if we have A, B = C' but A = (' then we may
prune the first rule. This is somewhat nontrivial in that
the longer rule may hold with a higher conviction value
and therefore we may want to keep it. We have imple-
mented pruning of all rules which have subsets with at
least as high a conviction value. This has proven quite
effective and and in tests it cuts down the number of
rules generated by more than a factor of 5. The rules
which are pruned are typically long and can be mis-
leading. An example of a pruned rule is an employed
civilian who had work in 1989, is not looking for a job,
18 not on a leave of absence, is caucasian, and whose
primary language is english, has worked this year. It
is implied by the rule an employed civilian has worked
this year. This kind of pruning is very effective and
can produce concise output for the user.

e Second, one can prune transitively implied rules. For
rules that hold 100% of the time, if we have A = B
and B = C, one may want to prune A = C. However,
there are several difficulties. First, which minimal set
of rules should one pick? There can be many. And
second, how should the rules which don’t hold 100% of
the time be handled? That is, how should the convic-
tion value be expected to carry through?

Overall, conviction has proven to be a useful new measure
having the benefits of being oo for perfect rules and 1 for
completely uncorrelated rules. Moreover, it generally ranks
rules in a reasonable and intuitive way. Unlike confidence,
it does not assign high values to rules simply because the
consequent is popular. Unlike interest, it is directional and
is strongly affected by the direction of the arrow so that it
can truly generate implication rules. However, as we found
out, a good ranking system for rules is not enough by itself.
More work needs to be done on rule pruning and filtering.

From our experiments we have learned that not all data
which fits into the market-basket framework behaves nearly
as well as supermarket data. We do not believe that this
is because 1t is a wrong choice of framework. It is simply
because doing this kind of analysis on data like census data
is difficult. There are very many correlations and redund-
ancies in census data. If we are aware beforehand of all
of its idiosyncrasies, we can probably simplify the problem
considerably (for example, by collapsing all the redundant
attributes) and find a specialized solution for it. However,
we want to build a general system, capable of detecting and
reporting the interesting aspects of any data we may throw at
it. Toward this goal, we developed DIC to make the task less
painful to those of us who are impatient, and we developed
conviction so that the results of mining market-basket data
are more usable.
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