Data mining: lecture 8

Edo liberty, adapted from class notes by Yoel Shkolnisky

We will see that any matrix A € R™*" can be written as A = ULV such
that U € R™*™ ig unitary, V € R™*™ is unitary, and ¥ € R™*" is a non-
negative real diagonal matrix. 3(i,4), denoted o;, are unique. If A the singular

values are distinct, then the singular vectors are unique up to a multiplication
by z € C with |z| = 1.

Remark 0.1. Note the difference in notation from what we saw in class. The
matrices V and U are what we denoted by [V; V] and [U; U] respectively. This
makes the proofs a little cleaner and hopefully more easy to follow. Note also
that % , unlike the matrix we denoted by S, is not square. The non square
matriz X is still diagonal though, i.e. 3(i,5) = 0 for all i # j.

1 The geometry of SVD

Vv
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2 Proof of existence

Set o1 = [|All,. Let u; € R™ and v; € R™ be unit 2-norm vectors such that
Avy = oju;. To find these vectors, find the unit vector v; that brings to
maximum the expression

max ||Az||.

llz]|=1
Then Av; = puy for some p and a unit vector uy. Since |Avi]| = o1, we get
that o1 = ||Av1|| = |u||lu]| = |p|- Set = o1 to be positive, by flipping the
sign of u; if needed.

Complete v; into an orthonormal basis of C", denote V;. Complete u; into



an orthonormal basis of C™, denoted Uj.
T
S = UlTAV1 = UlT [o1u1, Ava, ..., Av,] = <%1 wB > .

We will show that w” = 0.
o o1 wT o \" o
st ! ! >+ wlw=/o? +wTwl|/("}
w 0 B w/, w

That is ||S|| > v/o? + wTw. But [|S]|, = || A, = 01 and so w = 0.
By induction, B = U222V2T and

1 0 op O 1 0

The matrices
1 0 1 0
=0y 3,) v=ulo )

are unitary and the proof is complete.
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3 More properties of SVD

Lemma 3.1. The rank of A equals the number of nonzero singular values.

Proof. Recall that if B is n X k with rank n than rank(AB) = rank(A), and if
C is | x m with rank m then rank(C'A) = rank(A). Thus,

rank(A) = rank(ULVT) = rank(XV7) = rank(%).
Since ¥ is diagonal, its rank it the number its nonzero elements. O
Lemma 3.2. Let rank(A) = r. Then,

range(A) = span(uq,...,u,),
null(A) = span(vy41, ..., 0n).

Proof.

y € range(A) <= dx such that y = Ax
— y=UxVlz
< y=UXz, where z =V%z
= y= U(Ulzl,...,O'TZT,O,...,O)T
— Y= Z(Uizi)ui

i=1

< y € span(uq,...,u).



z€null(4) < [Az],=0 < [|[USV"z|,=0

— HEVT:EHQ =0 < ||Ey|\2=Owherey=VTx
< Yy = (O,...,O,yr+1,...,yn)T Wherey:VTx
— J,':Vy, Yy = (07"'707y7‘+17"'7yn)T
n
— T = Z Y; Vi
1=r+1
<= 1z €span(Vpi1,...,0p).

Lemma 3.3. ||A||, = o1 (even if you don’t know the above proof).

Proof. Immediate from the invariance of [-||, under unitary transformations.
O

4 Relation between singular values and eigen-
values

Lemma 4.1. The singular values of A are the square roots of the nonzero

eigenvalues of AT A and AAT.
Proof. If A=UXVT, then AT = VXU7T and

AAT = (UsvT) (veUT) =UssUT = USPUT

AAT is positive semi-definite and therefore all eigenvalues are non-negative and
there is no problem with the square root. O

Do not use this observation to compute the SVD! Reason: Assume for sim-
plicity that we have a 2 x 2 matrix A (not diagonal) whose SVD is given by
A = gyuvl + ogugvd (See 5.1 below). If o3 /01 < 10715, then the second term
will disappear due to round-off, that is, we cannot represent such a matrix in
double precision. Now, if the matrix A has o9/07 < 1078, then AT A and AAT
have ratio of singular values that is smaller than 107'°, and so those matrices
cannot be represented, and will be approximated as rank-1 matrices with the
second singular value being due to round-off. In other words, although A is not
terribly conditioned, we loose the small eigenvalues if we try to compute the
SVD by computing the eigenvalues of AT A or AAT.

Lemma 4.2. If A is hermitian, then the singular values of A are the absolute
values of its eigenvalues.



Proof. A hermitian matrix is diagonalized by a unitary matrix with real eigen-
values. That is,

A=QAQ" = Q|A]sign(A)Q".
Now set U = Q, ¥ = |A|, VT =sign(A)QT. O
5 Approximation properties

5.1 Rank-k approximation in the spectral norm

Lemma 5.1. A can be written as a sum of rank-1 matrices. Explicitly,

A = Z ajujv;‘-r.
j=1
Theorem 5.1. Set

k
_ T
A, = g ojUV;
=1

Then,
min A~ Bl = A~ Axll, = 0.
BG(C’VTLX’VL
rank(B)<k
Proof.

T k r
_ oo T T T
A— A, = g oju;V; g ojuv; = g OjU;V;
i=1

j=1 j=k+1
and thus o041 is the largest singular value of A — Aj. Alternatively, look at
UT ALV = diag(oq,...,0%,0,...,0), which means that rank(A;) = k, and that

|A = Ally = ||[UT(A = Ap)V]|, = |diag(0, . ..,0,0k41,...,00)|ly = Ohy1.

Let B be an arbitrary matrix with rank(By) = k. Then, it has a null space
of dimension n — k, that is,

null(B) = span(wy, ..., Wy—).
A dimension argument shows that
span(wy, ..., Wp—k) Nspan(vy,...,vkr1) 7# {0}.

Let w be a unit vector from the intersection. Since
k+1
Aw = Z o (v] w)uy,
j=1
we have
k41 k+1
1A= Bl > [[(A = Byw|; = [Aw|; =Y of|vfwl* > o7y Y v w|* = 0f,
j=1 j=1

since w € span{v,...,Un41}, and the v; are orthogonal. O



5.2 Rank-k approximation in the Frobenius norm

The same theorem holds with the Frobenius norm.

Theorem 5.2. Set i
Ak = ZUjUjUJT.
j=1

Then

K

min A= B|p = |4 - Akl =
BGCMXTL
rank(B)<k

Proof. Suppose A =UXVT. Then

min_ A= B2 = min [[USVT —UUTBVVT|L = min_ |[|S-UTBV|.

rank(B)<k rank(B)<k rank(B)<k

Now,

||E - UTBVHi = Z (Z“— - (UTBV)M))2 + off-diagonal terms.

=1

If B is the best approximation matrix and U7 BV is not diagonal, then write

UTBV = D+ 0O, where D is diagonal and O contains the off-diagonal elements.

Then the matrix B = UDV7 is a better approximation, which is a contradiction.
Thus, UT BV must be diagonal. Hence,

n

k
IS=Dlp=> (i =di)> =Y (oi —di)*+ > o7,

i=1 =1 i=k+1

and this is minimal when d; = 0, ¢ = 1,..., k. The best approximating matrix

is A, = UDV™, and the approximation error is /> 1", | o7. O

5.3 Closest orthogonal matrix

The SVD also allows to find the orthogonal matrix that is closest to a given
matrix. Again, suppose that A = ULV and W is an orthogonal matrix that
minimizes |4 — WH; among all orthogonal matrices. Now,

sV —wlfr. = [[usv? - ouTwvvT|| = [z -,

where W = U TW:V is another orthogonal matrix. We need to find the or-
thogonal matrix W that is closest to X. Alternatively, we need to minimize

~ 2
HWTE _ IH .
F



If U is orthogonal and D is diagonal and positive, then

1/2 1/2
trace(U D) Zumd;ﬂ < Z <Z ui) (Z di)
k k
1/2
— Z (Z diz> = Z 1/2 Zd“ = trace(D).
i k

%

Now

HWTE IH —trace<(WTE I WTE I))

= trace (( ) (EW I))
= trace ( wTs2w ) — trace (WT ) — trace (EW) +n
(o

)) — 2trace (EW) +n

- HEWHF _ 2+trace (EW) +n

= trace

= HE||2F — 2trace (EW) + n.

Thus, we need to maximize trace (EW) But this is maximized by W = I by
(1). Thus, the best approximating matrix is W = UV7.

6 The “Thin” SVD

Also called “economy size” SVD. If A € C™*", A = UXVT, and m > n, then
the “thin” SVD is A = U;1V7T where

U, = [ul,...,un] ccmxn

and
3, = diag(oy,...,0,) € R™*™.

7 Applications of the SVD

1. Determining range, null space and rank (also numerical rank).
2. Matrix approximation.

3. Inverse and Pseudo-inverse: If A = UXVT and ¥ is full rank, then
A7l = VE-WUT. If ¥ is singular, then its pseudo-inverse is given by
AT = VSTUT | where 2T is formed by replacing every nonzero entry by its
reciprocal.



4. Least squares: If we need to solve Az = b in the least-squares sense, then
s = VETUTD.

5. Denoising — Small singular values typically correspond to noise. Take the
matrix whose columns are the signals, compute SVD, zero small singular
values, and reconstruct.

6. Compression — We have signals as the columns of the matrix .S, that is,
the ¢ signal is given by

T

Sl' = Z (Ujvij)uj-

=1

If some of the o; are small, we can discard them with small error, thus
obtaining a compressed representation of each signal. We have to keep the
coefficients o;v;; for each signal and the dictionary, that is, the vectors u;
that correspond to the retained coefficients.

8 Differences between SVD and eigen-decomposition

1. Not every matrix has an eigen-decomposition (not even any square ma-
trix). Any matrix (even rectangular) has an SVD.

2. In eigen-decomposition A = X AX !, that is, the eigen-basis is not always
orthogonal. The basis of singular vectors is always orthogonal.

. In SVD we have two singular-bases (right and left).
. SVD tells everything on a matrix.

. SVD as no numerical problems.

S ot s W

. Relation to condition number; the numerical problems with eigen-decomposition;
multiplication by an orthogonal matrix is perfectly conditioned.

9 Linear regression in the least-squared loss

In Linear regression we aim to find the best linear approximation to a set of
observed data. For the m data points {z1,...,zn}, z; € R™, each receiving the
value y;, we look for the weight vector w that minimizes:

n

Y (@lw—yi)? = [|Aw — y];

i=1
Where A is a matrix that holds the data points as rows 4; = 21

Proposition 9.1. The vector w that minimizes HAw—yHg is w = Aty =
VtuTy for A=UXVT and EL =1/%; if £ > 0 and 0 else.



Let us define U and U, as the parts of U corresponding to positive and
zero singular values of A respectively. Also let y; = 0 and y, be two vectors
such that y =y +y. and UjyL =0 and U_y; = 0.

Since yj and i, are orthogonal we have that || Aw — yHg = HAw -y — ylH; =
HAw =Y H; + HyJ_Hg Now, since y) is in the range of A there is a solution w
for which HAw =y Hi =0. Namely, w = Afy = VETUTy for A=UXV”. This
is because USVTVEIUTy = y)|- Moreover, we get that the minimal cost is
exactly ||y L||§ which is independent of w.

10 Optimal squared loss dimension reduction

Given a set of n vectors z1,...,z, in R™. We look for a rank k projection
matrix P € R™*™ that minimizes:

> NP — a3
=1

If we denote by A the matrix whose i’th column is x; then this is equivalent to
minimizing ||[PA — A[|%,, Since the best possible rank k approximation to the
matrix A is Ay = Zle o;u;v} the best possible solution would be a projection
P for which PA = Ay. This is achieved by P = UkUkT where Uy, is the matrix
corresponding to the first & left singular vectors of A.

If we define y; = Ul x; we see that the values of y; € R¥ are optimally fitted
to the set of points x; in the sense that they minimize:

min  min Uy, — ;>
g yn\I/eRka;H Yi ill2
The mapping of z; — U'z; = y; thus reduces the dimension of any set of points
Z1,..., %, in R™ to a set of points 41, . . ., y» in R¥ optimally in the squared loss
sense. This is commonly referred to as Principal Component Analysis (PCA).



