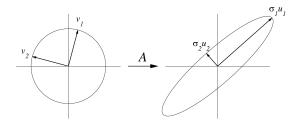
Data mining: lecture 8

Edo liberty, adapted from class notes by Yoel Shkolnisky

We will see that any matrix $A \in \mathbb{R}^{m \times n}$ can be written as $A = U\Sigma V^T$ such that $U \in \mathbb{R}^{m \times m}$ is unitary, $V \in \mathbb{R}^{n \times n}$ is unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ is a non-negative real diagonal matrix. $\Sigma(i, i)$, denoted σ_i , are unique. If A the singular values are distinct, then the singular vectors are unique up to a multiplication by $z \in \mathbb{C}$ with |z| = 1.

Remark 0.1. Note the difference in notation from what we saw in class. The matrices V and U are what we denoted by $[V; \overline{V}]$ and $[U; \overline{U}]$ respectively. This makes the proofs a little cleaner and hopefully more easy to follow. Note also that Σ , unlike the matrix we denoted by S, is not square. The non square matrix Σ is still diagonal though, i.e. $\Sigma(i, j) = 0$ for all $i \neq j$.

1 The geometry of SVD



2 Proof of existence

Set $\sigma_1 = ||A||_2$. Let $u_1 \in \mathbb{R}^n$ and $v_1 \in \mathbb{R}^m$ be unit 2-norm vectors such that $Av_1 = \sigma_1 u_1$. To find these vectors, find the unit vector v_1 that brings to maximum the expression

$$\max_{\|x\|=1} \|Ax\|.$$

Then $Av_1 = \mu u_1$ for some μ and a unit vector u_1 . Since $||Av_1|| = \sigma_1$, we get that $\sigma_1 = ||Av_1|| = |\mu| ||u_1|| = |\mu|$. Set $\mu = \sigma_1$ to be positive, by flipping the sign of u_1 if needed.

Complete v_1 into an orthonormal basis of \mathbb{C}^n , denote V_1 . Complete u_1 into

an orthonormal basis of \mathbb{C}^m , denoted U_1 .

$$S = U_1^T A V_1 = U_1^T \left[\sigma_1 u_1, A v_2, \dots, A v_n \right] = \begin{pmatrix} \sigma_1 & w^T \\ 0 & B \end{pmatrix}$$

We will show that $w^T = 0$.

$$\left\| S \begin{pmatrix} \sigma_1 \\ w \end{pmatrix} \right\|_2 = \left\| \begin{pmatrix} \sigma_1 & w^T \\ 0 & B \end{pmatrix} \begin{pmatrix} \sigma_1 \\ w \end{pmatrix}_2^T \right\| \ge \sigma_1^2 + w^T w = \sqrt{\sigma_1^2 + w^T w} \left\| \begin{pmatrix} \sigma_1 \\ w \end{pmatrix} \right\|_2.$$

That is $||S|| \ge \sqrt{\sigma_1^2 + w^T w}$. But $||S||_2 = ||A||_2 = \sigma_1$ and so w = 0. By induction, $B = U_2 \Sigma_2 V_2^T$ and

$$A = U_1 S V_1^T = U_1 \begin{pmatrix} 1 & 0 \\ 0 & U_2 \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ 0 & \Sigma_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & V_2^T \end{pmatrix} V_1^T.$$

The matrices

$$U = U_1 \begin{pmatrix} 1 & 0 \\ 0 & U_2 \end{pmatrix}, \quad V = V_1 \begin{pmatrix} 1 & 0 \\ 0 & V_2^T \end{pmatrix}$$

are unitary and the proof is complete.

3 More properties of SVD

Lemma 3.1. The rank of A equals the number of nonzero singular values.

Proof. Recall that if B is $n \times k$ with rank n than rank(AB) = rank(A), and if C is $l \times m$ with rank m then rank(CA) = rank(A). Thus,

$$\operatorname{rank}(A) = \operatorname{rank}(U\Sigma V^T) = \operatorname{rank}(\Sigma V^T) = \operatorname{rank}(\Sigma).$$

Since Σ is diagonal, its rank it the number its nonzero elements.

Lemma 3.2. Let $\operatorname{rank}(A) = r$. Then,

range(A) = span(
$$u_1, \ldots, u_r$$
),
null(A) = span(v_{r+1}, \ldots, v_n).

Proof.

$$y \in \operatorname{range}(A) \iff \exists x \text{ such that } y = Ax$$
$$\iff y = U\Sigma V^T x$$
$$\iff y = U\Sigma z, \text{ where } z = V^T x$$
$$\iff y = U (\sigma_1 z_1, \dots, \sigma_r z_r, 0, \dots, 0)^T$$
$$\iff y = \sum_{i=1}^r (\sigma_i z_i) u_i$$
$$\iff y \in \operatorname{span}(u_1, \dots, u_r).$$

$$\begin{aligned} x \in \operatorname{null}(A) &\iff \|Ax\|_2 = 0 \iff \|U\Sigma V^T x\|_2 = 0 \\ &\iff \|\Sigma V^T x\|_2 = 0 \iff \|\Sigma y\|_2 = 0 \text{ where } y = V^T x \\ &\iff y = (0, \dots, 0, y_{r+1}, \dots, y_n)^T \text{ where } y = V^T x \\ &\iff x = Vy, \ y = (0, \dots, 0, y_{r+1}, \dots, y_n)^T \\ &\iff x = \sum_{i=r+1}^n y_i v_i \\ &\iff x \in \operatorname{span}(v_{r+1}, \dots, v_n). \end{aligned}$$

Lemma 3.3. $||A||_2 = \sigma_1$ (even if you don't know the above proof).

Proof. Immediate from the invariance of $\|\cdot\|_2$ under unitary transformations.

Similarly, $||A||_F = (\sigma_1^2 + \dots + \sigma_r^2)^{1/2}$.

4 Relation between singular values and eigenvalues

Lemma 4.1. The singular values of A are the square roots of the nonzero eigenvalues of $A^T A$ and $A A^T$.

Proof. If $A = U\Sigma V^T$, then $A^T = V\Sigma U^T$ and

$$AA^{T} = \left(U\Sigma V^{T}\right)\left(V\Sigma U^{T}\right) = U\Sigma\Sigma U^{T} = U\Sigma^{2}U^{-1}.$$

 AA^T is positive semi-definite and therefore all eigenvalues are non-negative and there is no problem with the square root.

Do not use this observation to compute the SVD! Reason: Assume for simplicity that we have a 2×2 matrix A (not diagonal) whose SVD is given by $A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T$ (See 5.1 below). If $\sigma_2/\sigma_1 < 10^{-15}$, then the second term will disappear due to round-off, that is, we cannot represent such a matrix in double precision. Now, if the matrix A has $\sigma_2/\sigma_1 < 10^{-8}$, then $A^T A$ and AA^T have ratio of singular values that is smaller than 10^{-15} , and so those matrices cannot be represented, and will be approximated as rank-1 matrices with the second singular value being due to round-off. In other words, although A is not terribly conditioned, we loose the small eigenvalues if we try to compute the SVD by computing the eigenvalues of $A^T A$ or AA^T .

Lemma 4.2. If A is hermitian, then the singular values of A are the absolute values of its eigenvalues.

 $\mathit{Proof.}\,$ A hermitian matrix is diagonalized by a unitary matrix with real eigenvalues. That is,

$$A = Q\Lambda Q^T = Q|\Lambda|\operatorname{sign}(\Lambda)Q^T.$$

Now set U = Q, $\Sigma = |\Lambda|$, $V^T = \operatorname{sign}(\Lambda)Q^T$.

5 Approximation properties

5.1 Rank-k approximation in the spectral norm

Lemma 5.1. A can be written as a sum of rank-1 matrices. Explicitly,

$$A = \sum_{j=1}^{r} \sigma_j u_j v_j^T.$$

Theorem 5.1. Set

$$A_k = \sum_{j=1}^k \sigma_j u_j v_j^T.$$

Then,

$$\min_{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \le k}} \|A - B\|_2 = \|A - A_k\|_2 = \sigma_{k+1}.$$

Proof.

$$A - A_k = \sum_{j=1}^r \sigma_j u_j v_j^T - \sum_{j=1}^k \sigma_j u_j v_j^T = \sum_{j=k+1}^r \sigma_j u_j v_j^T$$

and thus σ_{k+1} is the largest singular value of $A - A_k$. Alternatively, look at $U^T A_k V = \text{diag}(\sigma_1, \ldots, \sigma_k, 0, \ldots, 0)$, which means that $\text{rank}(A_k) = k$, and that

$$||A - A_k||_2 = ||U^T (A - A_k)V||_2 = ||\operatorname{diag}(0, \dots, 0, \sigma_{k+1}, \dots, \sigma_r)||_2 = \sigma_{k+1}.$$

Let B be an arbitrary matrix with $rank(B_k) = k$. Then, it has a null space of dimension n - k, that is,

$$\operatorname{null}(B) = \operatorname{span}(w_1, \ldots, w_{n-k}).$$

A dimension argument shows that

$$\operatorname{span}(w_1,\ldots,w_{n-k})\cap\operatorname{span}(v_1,\ldots,v_{k+1})\neq\{0\}.$$

Let w be a unit vector from the intersection. Since

$$Aw = \sum_{j=1}^{k+1} \sigma_j(v_j^T w) u_j,$$

we have

$$||A - B||_2^2 \ge ||(A - B)w||_2^2 = ||Aw||_2^2 = \sum_{j=1}^{k+1} \sigma_j^2 |v_j^T w|^2 \ge \sigma_{k+1}^2 \sum_{j=1}^{k+1} |v_j^T w|^2 = \sigma_{k+1}^2,$$

since $w \in \text{span}\{v_1, \ldots, v_{n+1}\}$, and the v_j are orthogonal.

Rank-k approximation in the Frobenius norm 5.2

The same theorem holds with the Frobenius norm.

Theorem 5.2. Set

$$A_k = \sum_{j=1}^k \sigma_j u_j v_j^T.$$

Then,

$$\min_{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \le k}} \|A - B\|_F = \|A - A_k\|_F = \sqrt{\sum_{i=k+1}^n \sigma_i^2}.$$

Proof. Suppose $A = U\Sigma V^T$. Then

$$\min_{\operatorname{rank}(B) \le k} \|A - B\|_F^2 = \min_{\operatorname{rank}(B) \le k} \|U\Sigma V^T - UU^T B V V^T\|_F^2 = \min_{\operatorname{rank}(B) \le k} \|\Sigma - U^T B V\|_F^2$$

Now,

$$\left\|\Sigma - U^T B V\right\|_F^2 = \sum_{i=1}^n \left(\Sigma_{ii} - \left(U^T B V\right)_{ii}\right)^2 + \text{off-diagonal terms.}$$

If B is the best approximation matrix and $U^T B V$ is not diagonal, then write $U^T BV = D + O$, where D is diagonal and O contains the off-diagonal elements. Then the matrix $B = UDV^T$ is a better approximation, which is a contradiction.

Thus, $U^T B V$ must be diagonal. Hence,

$$\|\Sigma - D\|_F^2 = \sum_{i=1}^n (\sigma_i - d_i)^2 = \sum_{i=1}^k (\sigma_i - d_i)^2 + \sum_{i=k+1}^n \sigma_i^2,$$

and this is minimal when $d_i = \sigma_i$, i = 1, ..., k. The best approximating matrix is $A_k = UDV^T$, and the approximation error is $\sqrt{\sum_{i=k+1}^n \sigma_i^2}$.

5.3Closest orthogonal matrix

The SVD also allows to find the orthogonal matrix that is closest to a given matrix. Again, suppose that $A = U\Sigma V^T$ and W is an orthogonal matrix that minimizes $\|A - \hat{W}\|_{F}^{2}$ among all orthogonal matrices. Now,

$$\left\| U\Sigma V^T - W \right\|_F^2 = \left\| U\Sigma V^T - UU^T W V V^T \right\| = \left\| \Sigma - \tilde{W} \right\|,$$

where $\tilde{W} = U^T W V$ is another orthogonal matrix. We need to find the orthogonal matrix \tilde{W} that is closest to Σ . Alternatively, we need to minimize $\left\| \tilde{W}^T \Sigma - I \right\|_{F}^{2}$

If U is orthogonal and D is diagonal and positive, then

$$\operatorname{trace}(UD) = \sum_{i,k} u_{ik} d_{ki} \leq \sum_{i} \left(\left(\sum_{k} u_{ik}^{2} \right)^{1/2} \left(\sum_{k} d_{ik}^{2} \right)^{1/2} \right)$$

$$= \sum_{i} \left(\sum_{k} d_{ki}^{2} \right)^{1/2} = \sum_{i} \left(d_{ii}^{2} \right)^{1/2} = \sum_{i} d_{ii} = \operatorname{trace}(D).$$
(1)

Now

$$\begin{split} \left\| \tilde{W}^T \Sigma - I \right\|_F^2 &= \operatorname{trace} \left(\left(\tilde{W}^T \Sigma - I \right) \left(\tilde{W}^T \Sigma - I \right)^T \right) \\ &= \operatorname{trace} \left(\left(\tilde{W}^T \Sigma - I \right) \left(\Sigma \tilde{W} - I \right) \right) \\ &= \operatorname{trace} \left(\tilde{W}^T \Sigma^2 \tilde{W} \right) - \operatorname{trace} \left(\tilde{W}^T \Sigma \right) - \operatorname{trace} \left(\Sigma \tilde{W} \right) + n \\ &= \operatorname{trace} \left(\left(\Sigma \tilde{W} \right)^T \left(\Sigma \tilde{W} \right) \right) - 2 \operatorname{trace} \left(\Sigma \tilde{W} \right) + n \\ &= \left\| \Sigma \tilde{W} \right\|_F^2 - 2 \operatorname{trace} \left(\Sigma \tilde{W} \right) + n \\ &= \left\| \Sigma \right\|_F^2 - 2 \operatorname{trace} \left(\Sigma \tilde{W} \right) + n. \end{split}$$

Thus, we need to maximize trace $(\Sigma \tilde{W})$. But this is maximized by $\tilde{W} = I$ by (1). Thus, the best approximating matrix is $W = UV^T$.

6 The "Thin" SVD

Also called "economy size" SVD. If $A \in \mathbb{C}^{m \times n}$, $A = U\Sigma V^T$, and $m \ge n$, then the "thin" SVD is $A = U_1 \Sigma_1 V^T$ where

$$U_1 = [u_1, \dots, u_n] \in \mathbb{C}^{m \times n}$$

and

$$\Sigma_1 = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) \in \mathbb{R}^{n \times n}$$

7 Applications of the SVD

- 1. Determining range, null space and rank (also numerical rank).
- 2. Matrix approximation.
- 3. Inverse and Pseudo-inverse: If $A = U\Sigma V^T$ and Σ is full rank, then $A^{-1} = V\Sigma^{-1}U^T$. If Σ is singular, then its pseudo-inverse is given by $A^{\dagger} = V\Sigma^{\dagger}U^T$, where Σ^{\dagger} is formed by replacing every nonzero entry by its reciprocal.

- 4. Least squares: If we need to solve Ax = b in the least-squares sense, then $x_{LS} = V \Sigma^{\dagger} U^T b$.
- 5. Denoising Small singular values typically correspond to noise. Take the matrix whose columns are the signals, compute SVD, zero small singular values, and reconstruct.
- 6. Compression We have signals as the columns of the matrix S, that is, the *i* signal is given by

$$S_i = \sum_{i=1}^r \left(\sigma_j v_{ij}\right) u_j.$$

If some of the σ_i are small, we can discard them with small error, thus obtaining a compressed representation of each signal. We have to keep the coefficients $\sigma_j v_{ij}$ for each signal and the dictionary, that is, the vectors u_i that correspond to the retained coefficients.

8 Differences between SVD and eigen-decomposition

- 1. Not every matrix has an eigen-decomposition (not even any square matrix). Any matrix (even rectangular) has an SVD.
- 2. In eigen-decomposition $A = X\Lambda X^{-1}$, that is, the eigen-basis is not always orthogonal. The basis of singular vectors is always orthogonal.
- 3. In SVD we have two singular-bases (right and left).
- 4. SVD tells everything on a matrix.
- 5. SVD as no numerical problems.
- 6. Relation to condition number; the numerical problems with eigen-decomposition; multiplication by an orthogonal matrix is perfectly conditioned.

9 Linear regression in the least-squared loss

In Linear regression we aim to find the best linear approximation to a set of observed data. For the *m* data points $\{x_1, \ldots, x_m\}, x_i \in \mathbb{R}^n$, each receiving the value y_i , we look for the weight vector *w* that minimizes:

$$\sum_{i=1}^{n} (x_i^T w - y_i)^2 = \|Aw - y\|_2^2$$

Where A is a matrix that holds the data points as rows $A_i = x_i^T$.

Proposition 9.1. The vector w that minimizes $||Aw - y||_2^2$ is $w = A^{\dagger}y = V\Sigma^{\dagger}U^T y$ for $A = U\Sigma V^T$ and $\Sigma_{ii}^{\dagger} = 1/\Sigma_{ii}$ if $\Sigma_{ii} > 0$ and 0 else.

Let us define U_{\parallel} and U_{\perp} as the parts of U corresponding to positive and zero singular values of A respectively. Also let $y_{\parallel} = 0$ and y_{\perp} be two vectors such that $y = y_{\parallel} + y_{\perp}$ and $U_{\parallel}y_{\perp} = 0$ and $U_{\perp}y_{\parallel} = 0$.

Since y_{\parallel} and y_{\perp} are orthogonal we have that $||Aw - y||_2^2 = ||Aw - y_{\parallel} - y_{\perp}||_2^2 = ||Aw - y_{\parallel}||_2^2 + ||y_{\perp}||_2^2$. Now, since y_{\parallel} is in the range of A there is a solution w for which $||Aw - y_{\parallel}||_2^2 = 0$. Namely, $w = A^{\dagger}y = V\Sigma^{\dagger}U^Ty$ for $A = U\Sigma V^T$. This is because $U\Sigma V^T V\Sigma^{\dagger}U^T y = y_{\parallel}$. Moreover, we get that the minimal cost is exactly $||y_{\perp}||_2^2$ which is independent of w.

10 Optimal squared loss dimension reduction

Given a set of n vectors x_1, \ldots, x_n in \mathbb{R}^m . We look for a rank k projection matrix $P \in \mathbb{R}^{m \times m}$ that minimizes:

$$\sum_{i=1} ||Px_i - x_i||_2^2$$

If we denote by A the matrix whose i'th column is x_i then this is equivalent to minimizing $||PA - A||_{Fro}^2$ Since the best possible rank k approximation to the matrix A is $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ the best possible solution would be a projection P for which $PA = A_k$. This is achieved by $P = U_k U_k^T$ where U_k is the matrix corresponding to the first k left singular vectors of A.

If we define $y_i = U_k^T x_i$ we see that the values of $y_i \in \mathbb{R}^k$ are optimally fitted to the set of points x_i in the sense that they minimize:

$$\min_{y_1,\dots,y_n} \min_{\Psi \in \mathbb{R}^{k \times m}} \sum_{i=1} ||\Psi y_i - x_i||_2^2$$

The mapping of $x_i \to U_k^T x_i = y_i$ thus reduces the dimension of any set of points x_1, \ldots, x_n in \mathbb{R}^m to a set of points y_1, \ldots, y_n in \mathbb{R}^k optimally in the squared loss sense. This is commonly referred to as Principal Component Analysis (PCA).