
Data mining: lecture 8

Edo liberty, adapted from class notes by Yoel Shkolnisky

We will see that any matrix A ∈ Rm×n can be written as A = UΣV T such
that U ∈ Rm×m is unitary, V ∈ Rn×n is unitary, and Σ ∈ Rm×n is a non-
negative real diagonal matrix. Σ(i, i), denoted σi, are unique. If A the singular
values are distinct, then the singular vectors are unique up to a multiplication
by z ∈ C with |z| = 1.

Remark 0.1. Note the difference in notation from what we saw in class. The
matrices V and U are what we denoted by [V ;V ] and [U ;U ] respectively. This
makes the proofs a little cleaner and hopefully more easy to follow. Note also
that Σ , unlike the matrix we denoted by S, is not square. The non square
matrix Σ is still diagonal though, i.e. Σ(i, j) = 0 for all i 6= j.

1 The geometry of SVD

2 Proof of existence

Set σ1 = ‖A‖2. Let u1 ∈ Rn and v1 ∈ Rm be unit 2-norm vectors such that
Av1 = σ1u1. To find these vectors, find the unit vector v1 that brings to
maximum the expression

max
‖x‖=1

‖Ax‖ .

Then Av1 = µu1 for some µ and a unit vector u1. Since ‖Av1‖ = σ1, we get
that σ1 = ‖Av1‖ = |µ| ‖u1‖ = |µ|. Set µ = σ1 to be positive, by flipping the
sign of u1 if needed.

Complete v1 into an orthonormal basis of Cn, denote V1. Complete u1 into
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an orthonormal basis of Cm, denoted U1.

S = UT
1 AV1 = UT

1 [σ1u1, Av2, . . . , Avn] =

(

σ1 wT

0 B

)

.

We will show that wT = 0.
∥

∥

∥

∥

S

(

σ1

w

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

(

σ1 wT

0 B

)(

σ1

w

)T

2

∥

∥

∥

∥

∥

≥ σ2
1 + wTw =

√

σ2
1 + wTw

∥

∥

∥

∥

(

σ1

w

)∥

∥

∥

∥

2

.

That is ‖S‖ ≥
√

σ2
1 + wTw. But ‖S‖2 = ‖A‖2 = σ1 and so w = 0.

By induction, B = U2Σ2V
T
2 and

A = U1SV
T
1 = U1

(

1 0
0 U2

)(

σ1 0
0 Σ2

)(

1 0
0 V T

2

)

V T
1 .

The matrices

U = U1

(

1 0
0 U2

)

, V = V1

(

1 0
0 V T

2

)

are unitary and the proof is complete.

3 More properties of SVD

Lemma 3.1. The rank of A equals the number of nonzero singular values.

Proof. Recall that if B is n× k with rank n than rank(AB) = rank(A), and if
C is l ×m with rank m then rank(CA) = rank(A). Thus,

rank(A) = rank(UΣV T ) = rank(ΣV T ) = rank(Σ).

Since Σ is diagonal, its rank it the number its nonzero elements.

Lemma 3.2. Let rank(A) = r. Then,

range(A) = span(u1, . . . , ur),

null(A) = span(vr+1, . . . , vn).

Proof.

y ∈ range(A) ⇐⇒ ∃x such that y = Ax

⇐⇒ y = UΣV Tx

⇐⇒ y = UΣz, where z = V Tx

⇐⇒ y = U (σ1z1, . . . , σrzr, 0, . . . , 0)
T

⇐⇒ y =

r
∑

i=1

(σizi)ui

⇐⇒ y ∈ span(u1, . . . , ur).
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x ∈ null(A) ⇐⇒ ‖Ax‖2 = 0 ⇐⇒
∥

∥UΣV Tx
∥

∥

2
= 0

⇐⇒
∥

∥ΣV Tx
∥

∥

2
= 0 ⇐⇒ ‖Σy‖2 = 0 where y = V Tx

⇐⇒ y = (0, . . . , 0, yr+1, . . . , yn)
T

where y = V Tx

⇐⇒ x = V y, y = (0, . . . , 0, yr+1, . . . , yn)
T

⇐⇒ x =
n
∑

i=r+1

yivi

⇐⇒ x ∈ span(vr+1, . . . , vn).

Lemma 3.3. ‖A‖2 = σ1 (even if you don’t know the above proof).

Proof. Immediate from the invariance of ‖·‖2 under unitary transformations.

Similarly, ‖A‖F = (σ2
1 + · · ·+ σ2

r )
1/2.

4 Relation between singular values and eigen-

values

Lemma 4.1. The singular values of A are the square roots of the nonzero
eigenvalues of ATA and AAT .

Proof. If A = UΣV T , then AT = V ΣUT and

AAT =
(

UΣV T
) (

VΣUT
)

= UΣΣUT = UΣ2U−1.

AAT is positive semi-definite and therefore all eigenvalues are non-negative and
there is no problem with the square root.

Do not use this observation to compute the SVD! Reason: Assume for sim-
plicity that we have a 2 × 2 matrix A (not diagonal) whose SVD is given by
A = σ1u1v

T
1 + σ2u2v

T
2 (See 5.1 below). If σ2/σ1 < 10−15, then the second term

will disappear due to round-off, that is, we cannot represent such a matrix in
double precision. Now, if the matrix A has σ2/σ1 < 10−8, then ATA and AAT

have ratio of singular values that is smaller than 10−15, and so those matrices
cannot be represented, and will be approximated as rank-1 matrices with the
second singular value being due to round-off. In other words, although A is not
terribly conditioned, we loose the small eigenvalues if we try to compute the
SVD by computing the eigenvalues of ATA or AAT .

Lemma 4.2. If A is hermitian, then the singular values of A are the absolute
values of its eigenvalues.
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Proof. A hermitian matrix is diagonalized by a unitary matrix with real eigen-
values. That is,

A = QΛQT = Q|Λ| sign(Λ)QT .

Now set U = Q, Σ = |Λ|, V T = sign(Λ)QT .

5 Approximation properties

5.1 Rank-k approximation in the spectral norm

Lemma 5.1. A can be written as a sum of rank-1 matrices. Explicitly,

A =

r
∑

j=1

σjujv
T
j .

Theorem 5.1. Set

Ak =

k
∑

j=1

σjujv
T
j .

Then,
min

B∈C
m×n

rank(B)≤k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.

Proof.

A−Ak =

r
∑

j=1

σjujv
T
j −

k
∑

j=1

σjujv
T
j =

r
∑

j=k+1

σjujv
T
j

and thus σk+1 is the largest singular value of A − Ak. Alternatively, look at
UTAkV = diag(σ1, . . . , σk, 0, . . . , 0), which means that rank(Ak) = k, and that

‖A−Ak‖2 =
∥

∥UT (A−Ak)V
∥

∥

2
= ‖diag(0, . . . , 0, σk+1, . . . , σr)‖2 = σk+1.

Let B be an arbitrary matrix with rank(Bk) = k. Then, it has a null space
of dimension n− k, that is,

null(B) = span(w1, . . . , wn−k).

A dimension argument shows that

span(w1, . . . , wn−k) ∩ span(v1, . . . , vk+1) 6= {0}.

Let w be a unit vector from the intersection. Since

Aw =

k+1
∑

j=1

σj(v
T
j w)uj ,

we have

‖A−B‖22 ≥ ‖(A−B)w‖22 = ‖Aw‖22 =

k+1
∑

j=1

σ2
j |v

T
j w|

2 ≥ σ2
k+1

k+1
∑

j=1

|vTj w|
2 = σ2

k+1,

since w ∈ span{v1, . . . , vn+1}, and the vj are orthogonal.
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5.2 Rank-k approximation in the Frobenius norm

The same theorem holds with the Frobenius norm.

Theorem 5.2. Set

Ak =

k
∑

j=1

σjujv
T
j .

Then,

min
B∈C

m×n

rank(B)≤k

‖A−B‖F = ‖A−Ak‖F =

√

√

√

√

n
∑

i=k+1

σ2
i .

Proof. Suppose A = UΣV T . Then

min
rank(B)≤k

‖A−B‖
2
F = min

rank(B)≤k

∥

∥UΣV T − UUTBV V T
∥

∥

2

F
= min

rank(B)≤k

∥

∥Σ− UTBV
∥

∥

2

F
.

Now,

∥

∥Σ− UTBV
∥

∥

2

F
=

n
∑

i=1

(

Σii −
(

UTBV )ii
))2

+ off-diagonal terms.

If B is the best approximation matrix and UTBV is not diagonal, then write
UTBV = D+O, where D is diagonal and O contains the off-diagonal elements.
Then the matrixB = UDV T is a better approximation, which is a contradiction.

Thus, UTBV must be diagonal. Hence,

‖Σ−D‖2F =
n
∑

i=1

(σi − di)
2 =

k
∑

i=1

(σi − di)
2 +

n
∑

i=k+1

σ2
i ,

and this is minimal when di = σi, i = 1, . . . , k. The best approximating matrix

is Ak = UDV T , and the approximation error is
√

∑n
i=k+1 σ

2
i .

5.3 Closest orthogonal matrix

The SVD also allows to find the orthogonal matrix that is closest to a given
matrix. Again, suppose that A = UΣV T and W is an orthogonal matrix that
minimizes ‖A−W‖

2
F among all orthogonal matrices. Now,

∥

∥UΣV T −W
∥

∥

2

F
=
∥

∥UΣV T − UUTWV V T
∥

∥ =
∥

∥

∥
Σ− W̃

∥

∥

∥
,

where W̃ = UTWV is another orthogonal matrix. We need to find the or-
thogonal matrix W̃ that is closest to Σ. Alternatively, we need to minimize
∥

∥

∥W̃TΣ− I
∥

∥

∥

2

F
.
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If U is orthogonal and D is diagonal and positive, then

trace(UD) =
∑

i,k

uikdki ≤
∑

i





(

∑

k

u2
ik

)1/2(
∑

k

d2ik

)1/2




=
∑

i

(

∑

k

d2ki

)1/2

=
∑

i

(

d2ii
)1/2

=
∑

i

dii = trace(D).

(1)

Now

∥

∥

∥W̃TΣ− I
∥

∥

∥

2

F
= trace

(

(

W̃TΣ− I
)(

W̃TΣ− I
)T
)

= trace
((

W̃TΣ− I
)(

ΣW̃ − I
))

= trace
(

W̃TΣ2W̃
)

− trace
(

W̃TΣ
)

− trace
(

ΣW̃
)

+ n

= trace

(

(

ΣW̃
)T (

ΣW̃
)

)

− 2 trace
(

ΣW̃
)

+ n

=
∥

∥

∥ΣW̃
∥

∥

∥

2

F
− 2 trace

(

ΣW̃
)

+ n

= ‖Σ‖
2
F − 2 trace

(

ΣW̃
)

+ n.

Thus, we need to maximize trace
(

ΣW̃
)

. But this is maximized by W̃ = I by

(1). Thus, the best approximating matrix is W = UV T .

6 The “Thin” SVD

Also called “economy size” SVD. If A ∈ Cm×n, A = UΣV T , and m ≥ n, then
the “thin” SVD is A = U1Σ1V

T where

U1 = [u1, . . . , un] ∈ C
m×n

and
Σ1 = diag(σ1, . . . , σn) ∈ R

n×n.

7 Applications of the SVD

1. Determining range, null space and rank (also numerical rank).

2. Matrix approximation.

3. Inverse and Pseudo-inverse: If A = UΣV T and Σ is full rank, then
A−1 = V Σ−1UT . If Σ is singular, then its pseudo-inverse is given by
A† = V Σ†UT , where Σ† is formed by replacing every nonzero entry by its
reciprocal.
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4. Least squares: If we need to solve Ax = b in the least-squares sense, then
xLS = V Σ†UT b.

5. Denoising – Small singular values typically correspond to noise. Take the
matrix whose columns are the signals, compute SVD, zero small singular
values, and reconstruct.

6. Compression – We have signals as the columns of the matrix S, that is,
the i signal is given by

Si =

r
∑

i=1

(σjvij)uj .

If some of the σi are small, we can discard them with small error, thus
obtaining a compressed representation of each signal. We have to keep the
coefficients σjvij for each signal and the dictionary, that is, the vectors ui

that correspond to the retained coefficients.

8 Differences between SVD and eigen-decomposition

1. Not every matrix has an eigen-decomposition (not even any square ma-
trix). Any matrix (even rectangular) has an SVD.

2. In eigen-decomposition A = XΛX−1, that is, the eigen-basis is not always
orthogonal. The basis of singular vectors is always orthogonal.

3. In SVD we have two singular-bases (right and left).

4. SVD tells everything on a matrix.

5. SVD as no numerical problems.

6. Relation to condition number; the numerical problems with eigen-decomposition;
multiplication by an orthogonal matrix is perfectly conditioned.

9 Linear regression in the least-squared loss

In Linear regression we aim to find the best linear approximation to a set of
observed data. For the m data points {x1, . . . , xm}, xi ∈ Rn, each receiving the
value yi, we look for the weight vector w that minimizes:

n
∑

i=1

(xT
i w − yi)

2 = ‖Aw − y‖
2
2

Where A is a matrix that holds the data points as rows Ai = xT
i .

Proposition 9.1. The vector w that minimizes ‖Aw − y‖
2
2 is w = A†y =

V Σ†UT y for A = UΣV T and Σ†
ii = 1/Σii if Σii > 0 and 0 else.
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Let us define U‖ and U⊥ as the parts of U corresponding to positive and
zero singular values of A respectively. Also let y‖ = 0 and y⊥ be two vectors
such that y = y‖ + y⊥ and U‖y⊥ = 0 and U⊥y‖ = 0.

Since y‖ and y⊥ are orthogonal we have that ‖Aw − y‖
2
2 =

∥

∥Aw − y‖ − y⊥
∥

∥

2

2
=

∥

∥Aw − y‖
∥

∥

2

2
+ ‖y⊥‖

2
2. Now, since y‖ is in the range of A there is a solution w

for which
∥

∥Aw − y‖
∥

∥

2

2
= 0. Namely, w = A†y = V Σ†UT y for A = UΣV T . This

is because UΣV TVΣ†UT y = y‖. Moreover, we get that the minimal cost is

exactly ‖y⊥‖
2
2 which is independent of w.

10 Optimal squared loss dimension reduction

Given a set of n vectors x1, . . . , xn in Rm. We look for a rank k projection
matrix P ∈ Rm×m that minimizes:

∑

i=1

||Pxi − xi||
2
2

If we denote by A the matrix whose i’th column is xi then this is equivalent to
minimizing ||PA − A||2Fro Since the best possible rank k approximation to the

matrix A is Ak =
∑k

i=1 σiuiv
T
i the best possible solution would be a projection

P for which PA = Ak. This is achieved by P = UkU
T
k where Uk is the matrix

corresponding to the first k left singular vectors of A.
If we define yi = UT

k xi we see that the values of yi ∈ Rk are optimally fitted
to the set of points xi in the sense that they minimize:

min
y1,...,yn

min
Ψ∈Rk×m

∑

i=1

||Ψyi − xi||
2
2

The mapping of xi → UT
k xi = yi thus reduces the dimension of any set of points

x1, . . . , xn in Rm to a set of points y1, . . . , yn in Rk optimally in the squared loss
sense. This is commonly referred to as Principal Component Analysis (PCA).
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