
Data mining: lecture 11

Edo liberty

1 Nearest Neighbor search

Definition 1.1. In the last class we discussed possible solutions for the nearest

neighbor problem in low dimensions. The problem is defined below. Nearest

Neighbor Search: Given a set of points {x1, . . . , xn} ∈ R
d preprocess them

into a data structure X of size O(n poly(d)) in time O(n poly(d)) such that

nearest neighbor queries can be performed in logarithmic time. In other words,

given a search point q a radius r and X one can return an xi such the ||q −
xi|| ≤ r or nothing if no such point exists. The search for xi should require

O(poly(d, log(n))) time.

As we have seen, this problem is hard when the dimension d is large. It
turns out that if we relax the problem a little bit, we can take a different tack
at it.

Definition 1.2. Approximate Nearest Neighbor Search: Given a set

of points {x1, . . . , xn} ∈ R
d preprocess them into a data structure X of size

O(n poly(d)) in time O(n poly(d)) such that ε-close nearest neighbor queries

can be performed in logarithmic time. In other words, given a search point q
a radius r a constant ε and X one can do one of two things. If there exists a

point xi such that ||q − xi|| ≤ r then return possibly another point xj for which

||q − xj || ≤ r(1 + ε). If for all i, ||q − xi|| > r(1 + ε), return no point. The

search should require O(poly(d, log(n))) time.

The idea is that of Local Sensitive Hashing (LSH). We define a family H of
functions as (r1, r2, p1, p2)-sensitive if:

||x− y|| < r1 → Pr
h∼H

(h(x) = h(y)) > p1

||x− y|| > r2 → Pr
h∼H

(h(x) = h(y)) < p2

This is only meaningful if r1 < r2 and p1 > p2. Which means that if x and
y are “close” then the probability that they hash to the same value is at least
something, but if the are further away then it is smaller. Or, the probability of
points being hashed to the same value decreases with their distance.

Let us assume such functions exist and give some intuition on how to use
them. First we concatenate k different hash functions from H to construct a
new hash function g(x) = [h1(x), . . . , hk(x)]. We choose k such that Pr(g(x) =
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g(y)) ≤ 1/n if ||x − y|| > r2. Using the (r1, r2, p1, p2)-sensitivity of H we will
get that if ||x− y|| < r1 then Pr(g(x) = g(y)) ≥ 1/nρ for some ρ < 1.

Now, if we generate ℓ = nρ different copies of g, g1, . . . , gℓ, and consider
every x in the data for which gi(x) = gi(q) we will find every close point x with
constant probability and consider only O(nρ) far points.

Let us make this statement more precise. The preprocessing step is so.

1. ρ← log(1/p1)/ log(1/p2)

2. ℓ← nρ

3. k ← log(n)/log(1/p2)

4. for ℓ′ ∈ {1, . . . , ℓ}

5. gℓ′ ← [h1(x), . . . , hk(x)]

6. for x ∈ X

7. for ℓ′ ∈ {1, . . . , ℓ}

8. add x to Tℓ′(gℓ′(x))

The search stage is as follows:

1. S ← ∅

2. for ℓ′ ∈ {1, . . . , ℓ}

3. add Tℓ′(gℓ′(x))) to S

4. if |S| ≤ 2nρ

5. for x′ ∈ S

6. if ||x′ − q|| ≤ r2

7. return x′

Fact 1.1. the number of points x such that ||x− q|| ≥ r2 and x ∈ S is smaller

that 2 · nρ with probability at least 1/2.

Proof. x ∈ S is for some ℓ′ we have gℓ′(q) = gℓ′(x) for x such that ||x− q|| > r2
this happens with probability p

log(n)/log(1/p2)
2 = 1/n. Thus, the expected total

number of such points x is 1. Since we have ℓ = nρ different g functions the
total expected number of such points is nρ. Due to the above and Markov’s
inequality Pr[|S| > 2nρ] ≤ Pr[|S| > 2E[|S|]] ≤ 1/2.

Fact 1.2. If ||x− q|| ≤ r1 then with constant probability x ∈ S
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Proof. By the (r1, r2, p1, p2)-sensitivity of H

Pr[g(x) = g(q)] ≥ pk1 = p
log(n)/ log(1/p2)
1 = n− log(1/p1)/ log(1/p2) = n−ρ

Since we repeat this ℓ = nρ times independently, we have that gℓ′(x) 6= gℓ′(q)
for all ℓ′ with probability at most (1− n−ρ)n

ρ

< e−1

Thus, both events happen with probability at least 1 − 1/2 − e−1 = const.
We can duplicate the entire data structure O(log(1/δ)) time to achieve success
probability 1− δ in the cost of an O(log(1/δ)) factor in data storage and search
time. This means that the searching running time is O(dnρ).

2 LSH functions

2.1 {0, 1}d with the Hamming distance

The humming distance between points are x, y ∈ {0, 1}d is defined as the num-
ber of coordinates for which x and y defer. We claim that choosing a random
coordinate from each vector is a local sensitive function and examine its param-
eters.

Fact 2.1. let H be a family of d functions for which hi(x) = xi. Then, H is

(r, (1 + ε)r, 1− r
d , 1−

(1+ε)r
d )-sensitive.

Fact 2.2. If r ≤ d/ log(n) then ρ = log(1/p1)/ log(1/p2) ≤ 1/(1 + ε)

Proof. See Fact 3 in [1]. Moreover, assuming r ≤ d/ log(n) is harmless since
we can always extend each vector by d log(n) zeros which does not change their
distances and guaranties that r ≤ d/ log(n).

Remark 2.1. This results is also applicable to the Euclidian distance setting

because it is possible to map ℓd2 into ℓ
O(d)
1 and also trivially possible to map

ℓd1 = {0, 1}O(d/ε) with distortion ε for bounded valued vectors.

Thus, the running time of O(nρ) is in fact O(n1/(1+ε)). In other words, to
find a the closest neighbor up to a factor of 2 in this distance is possible while
examining only O(

√
n) data points. This, however, does not achieve the bound

of O(poly(d, log(n))).

2.2 Points in Sd−1 and angular distance

The set of unit length vectors in R
d is called the d dimensional unit sphere

and is denoted by Sd−1 (the power is d − 1 to denote that it is actually a
d − 1 dimensional manifold. Do not be confused, the points are still in R

d)
For these points, we can define the distance as the angle between the vectors
d(x, y) = cos−1(xT y). We can thus define a hash function h(x) = sign(uTx)
for a vector u chosen uniformly at random from Sd−1. It is immediate to show
that h is local sensitive to the angular distance with parameters similar to the
previous subsection.
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