
Data mining: lecture 4

Edo liberty

Bit Hashs vs. Bloom Filters

We want to represent a set of elements S with a data structure such that we
can query if an element q is in S or not.

In other words, we must implement a data structure that supports Add(e)
andQuery(q). Our demand is that if q ∈ S the data structure functionQuery(q)
will always return True. if q 6∈ S then Query(q) should return False, but we
are willing to receive False Positives with probability δ, i.e., Query(q) returning
True although q 6∈ S. For notation’s sake, we say that |S| = n.

Although we can use a traditional Hash table, we want to avoid keeping the
elements of S. These might be long strings, for example, and keeping them
would be wasteful. Also, because we are willing to accept False Positives, we
can alter the structure of the Hash table and keep only one bit per entry in the
array, we will call them bit-hashes.

Bit-Hashs

For a bit-hash structure we keep a bit array A of length N all initialized to
False. and a hash function h : elements→ [1, . . . , N ].

1. define Add(e):

2. A[h[e]]← True

1. define Query(q):

2. return A[h[q]]

Let us see how large N (the array) needs to be in order to insure that the
probability of a false negative is at most δ. Clearly, after inserting n elements
into the array, the number of bits that are set to True is at most n. Thus, the
probability of a false negative is at most n/N . This gives us that N ≥ n/δ, the
error probability is at most δ.

It is easy to see that this is not only sufficient but also necessary. Assume,
n < N/3, the probability that an element in S occupies a new cell in the array
when inserted is at least 2/3. Thus, with very high probability, the number of
cells set to True after all the elements of S have been added is at least n/2.

This gives us the other side of the equation. If N < n/2δ, the error proba-
bility is at least δ.
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Bloom Filters

Now assume that we have the same bit array of size N but instead of keeping
one hash function we keep k of them, h1, . . . , hk.

1. define Add(e):

2. for i in [1, . . . , k]

3. A[hi[e]]← True

1. define Query(q):

2. return ∧ki=1Ai[h[q]]

It is easy to see that for any e ∈ S we will always get Query(e) = True. Now,
what is the probability that Query(q) = True for q 6∈ S. That will happen if all
k bits of hi[q] are set to True. Since we have entered n elements for which we
have randomly chosen k bits (possibly with repetition) the probability of a single
bit to still be set to False is (1−1/N)nk. The event that all k positions of hi[q]
are set to True thus happens with probability (1− (1− 1/N)nk)k. By choosing
k = N/n we get that this is roughly (1− e−1)N/n. We get that this is less than
δ if we choose N > 3n log(1/δ). Note the huge improvement, N > 3n log(1/δ)
for Bloom filters vs. N > n/2δ for bit hashes.

Also, note that since k = N/n we get that we need only O(log(1/δ)) hash
functions and thus O(log(1/δ)) operations per insertion of an element into the
structure.
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