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Probabilistic inequalities

In this question you will be asked to derive the three most used probabilistic inequalities
for a specific random variable. Let z1,...,2, be independent {—1,1} valued random
variables. Each z; takes the value 1 with probability 1/2 and —1 else. Let X = > | ;.

1.

Let the random variable Y be defined as Y = | X|. Prove that Markov’s inequality
holds for Y. Hint: note that Y takes integer values. Also, there is no need to
compute Pr[Y = i].

. Prove Chebyshev’s inequality for the above random variable X. You can use the fact

that Markov’s inequality holds for any positive variable regardless of your success
(or lack of if) in the previous question. Hint: Var[X]| = E[(X — E[X])?].

Argue that
B[ ]

Pr[X > a] = Pr[II} v

1=

1 )\LE»L > e)\a] S ~

for any A € [0,1]. Explain each transition.

. Argue that:
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What property of the random variables x; did we use in each transition?

. Conclude that Pr[X > a] < e~ by showing that:
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Hint: For the hyperbolic cosine function we have cosh(z) = (e +¢e7%) < e®/2 for
z €[0,1] A € [0,1].



The number of unique elements in an array

setup

In this question we will approximate the number of unique elements in a array L of
known length n into which we have random access. The array contains m unique elements
ai,...,an, each of which appears n(a;) times, i.e., Y. n(a;) = n. We define the following
sampling procedure:

1. Pick j uniformly at random from [1,...,n]
2. z « L[j]

3. return x

questions

1. Define p(z) as the probability that the sampling procedure above returns element
x. Compute p(x) as a function of n and n(z)

2. Let f(x) ~~. Compute:
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Ez~smp[f(x)]

where z ~ smp denoted that z is chosen according the sampling procedure above.

3. A list is said to be k-frequency-bounded if no item in it appears more than k times.
In Other words, max;e1,... mn(a;) < k. Show that for a k-frequency-bounded list
Lwe have that:

.

Vargosmplf(2)] < km?

4. Let Y = %22:1 f(z¢) where x4 are chosen independently from the list according
to the sampling procedure. Compute E[Y] and show that Var[Y] < km?/s.

5. Use Chebyshev’s inequality to find a value for s such that for any k-frequency-
bounded list and any two constants € € [0,1] and § € [0, 1]:

PrlY —m| > em] < 4.

s should be a function of k, € and 4.



2 Approximate pie-charts

setup

A list A of length n contains m distinct items. Each of which appears n; times, i.e.,
it n; = n. We define the frequency f; of item ¢ as n;/n. A circle divided into sections
relative to f; is called a pie-chart and we would like to produce one. Alas, the list A is
very long and we would rather perform o(n) operations to produce it. Our strategy is
to sample s items from the list uniformly at random with replacement and output the
histogram of s. More formally, let s; denote the number of times item ¢ appeared in the
sample and g; = s;/s. We would want to have that for each item:

Ji—T<g < fitT
The value of 7 is the prescribed precision, for example, 1%. Note that it is an additive
error and not a multiplicative one.
questions
1. Compute E[g;].

2. Bound from above the probability of a large deviation. In other words, bound
Prllgi — fil > 7].

3. Find a value for s such that with probability at least 1—0 for all i we have |g; — fi| <
T.

4. Bonus question: show that the condition of 3 hold also for:
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3 Bloom-like filter

setup

This question will deal with a data structure for holding a set of objects in a space efficient
manner such that membership queries can be performed quickly and reliably. For lack of
a better name we will call this data-structure a bloom-like filter. Bloom-like filters consist
of k bit arrays By, ..., By each of length n (all bits initially set to False). They are also
associated with &k hash functions hq,...,hx. Each hash function h; : x — [1,...,n] is
chosen independently at random from a family H such that for any object, x, in the
universe Pryg[h(z) = i] = 1/n. We define the following two operations on bloom-like
filters.

1. insert(x)

2. foriin [1,..., k]

3. B;[hi(x)] = True

1. query(x)

2. foréin [1,..., k]

3 if B;[h;(z)] == False

4. return False

5. return True
questions

1. Argue that for any element « which was inserted into the bloom-like filter (insert(x)
was performed) the output of query(x) is True.

2. Assume we have inserted exactly n different items into the bloom-like filter. What
is the probability that query(z™¢*) return True for ™" which was not inserted.
Provide a bound for this probability which does not depend on n (you can assume
n is larger than 2)

3. We now query the bloom-like filter with m different new objects 7", ..., ale".

s m

Provide a value for k such that query(z?*) returns False for all the m new objects

with probability at least 1 — . Note, the randomness is only the choice of the hash
functions.



Useful facts

. For any vector z € R? we define the p-norm of z as follows:

d

]l = [ (a(@)?)/”
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. Markov’s inequality: For any non-negative random variable X:

Pr[X > 1] < E[X]/t.

. Chebyshev’s inequality: For any random variable X:

Pr|X — E[X]| > t] < Var[X]/t%.

. Chernoff’s inequality: Let 21, ..., 2, be independent {0, 1} valued random vari-
ables. Each z; takes the value 1 with probability p; and 0 else. Let X =" | ;
and let p = E[X]=>"" | p;. Then:

PriX > (1+e)y] ehet /A

PriX < (1—e)y]
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Or in a another convenient form:

Pr(|X — p| > ep] < 2e 1/

. Hoeffding’s inequality: Let z1,...,z, be independent random variables taking
values in {+1, —1} each with probability 1/2, then:
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Pr(| " wias| > 1] < 2 Timac
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. For any x > 2 we have:

. For convenience:
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