
1 Probabilistic inequalities

In this question you will be asked to derive the three most used probabilistic inequalities
for a specific random variable. Let x1, . . . , xn be independent {−1, 1} valued random
variables. Each xi takes the value 1 with probability 1/2 and −1 else. Let X =

∑n
i=1 xi.

1. Let the random variable Y be defined as Y = |X |. Prove that Markov’s inequality
holds for Y . Hint: note that Y takes integer values. Also, there is no need to
compute Pr[Y = i].

2. Prove Chebyshev’s inequality for the above random variableX . You can use the fact
that Markov’s inequality holds for any positive variable regardless of your success
(or lack of if) in the previous question. Hint: Var[X ] = E[(X − E[X ])2].

3. Argue that

Pr[X > a] = Pr[Πn
i=1e

λxi > eλa] ≤
E[Πn

i=1e
λxi ]

eλa

for any λ ∈ [0, 1]. Explain each transition.

4. Argue that:
E[Πn

i=1e
λxi ]

eλa
=

Πn
i=1E[eλxi ]

eλa
=

(E[eλx1 ])n

eλa

What property of the random variables xi did we use in each transition?

5. Conclude that Pr[X > a] ≤ e−
a
2

2n by showing that:

∃ λ ∈ [0, 1] s.t.
(E[eλx1 ])n

eλa
≤ e−

a
2

2n

Hint: For the hyperbolic cosine function we have cosh(x) = 1
2 (e

x+ e−x) ≤ ex
2/2 for

x ∈ [0, 1] λ ∈ [0, 1].
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The number of unique elements in an array

setup

In this question we will approximate the number of unique elements in a array L of
known length n into which we have random access. The array containsm unique elements
a1, . . . , am each of which appears n(ai) times, i.e.,

∑m
i=1 n(ai) = n. We define the following

sampling procedure:

1. Pick j uniformly at random from [1, . . . , n]

2. x← L[j]

3. return x

questions

1. Define p(x) as the probability that the sampling procedure above returns element
x. Compute p(x) as a function of n and n(x)

2. Let f(x) = n
n(x) . Compute:

Ex∼smp[f(x)]

where x ∼ smp denoted that x is chosen according the sampling procedure above.

3. A list is said to be k-frequency-bounded if no item in it appears more than k times.
In Other words, maxi∈[1,...,m] n(ai) ≤ k. Show that for a k-frequency-bounded list
Lwe have that:

Varx∼smp[f(x)] ≤ km2

4. Let Y = 1
s

∑s
ℓ=1 f(xℓ) where xℓ are chosen independently from the list according

to the sampling procedure. Compute E[Y ] and show that Var[Y ] ≤ km2/s.

5. Use Chebyshev’s inequality to find a value for s such that for any k-frequency-
bounded list and any two constants ε ∈ [0, 1] and δ ∈ [0, 1]:

Pr[|Y −m| > εm] < δ.

s should be a function of k, ε and δ.
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2 Approximate pie-charts

setup

A list A of length n contains m distinct items. Each of which appears ni times, i.e.,∑m
i=1 ni = n. We define the frequency fi of item i as ni/n. A circle divided into sections

relative to fi is called a pie-chart and we would like to produce one. Alas, the list A is
very long and we would rather perform o(n) operations to produce it. Our strategy is
to sample s items from the list uniformly at random with replacement and output the
histogram of s. More formally, let si denote the number of times item i appeared in the
sample and gi = si/s. We would want to have that for each item:

fi − τ ≤ gi ≤ fi + τ.

The value of τ is the prescribed precision, for example, 1%. Note that it is an additive
error and not a multiplicative one.

questions

1. Compute E[gi].

2. Bound from above the probability of a large deviation. In other words, bound
Pr[|gi − fi| > τ ].

3. Find a value for s such that with probability at least 1−δ for all i we have |gi−fi| ≤
τ .

4. Bonus question: show that the condition of 3 hold also for:

s ≥
4 log(2m/δ)

mτ2
.
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3 Bloom-like filter

setup

This question will deal with a data structure for holding a set of objects in a space efficient
manner such that membership queries can be performed quickly and reliably. For lack of
a better name we will call this data-structure a bloom-like filter. Bloom-like filters consist
of k bit arrays B1, . . . , Bk each of length n (all bits initially set to False). They are also
associated with k hash functions h1, . . . , hk. Each hash function hi : x → [1, . . . , n] is
chosen independently at random from a family H such that for any object, x, in the
universe Prh∼H [h(x) = i] = 1/n. We define the following two operations on bloom-like
filters.

1. insert(x)

2. for i in [1, . . . , k]

3. Bi[hi(x)] = True

1. query(x)

2. for i in [1, . . . , k]

3. if Bi[hi(x)] == False

4. return False

5. return True

questions

1. Argue that for any element x which was inserted into the bloom-like filter (insert(x)
was performed) the output of query(x) is True.

2. Assume we have inserted exactly n different items into the bloom-like filter. What
is the probability that query(xnew) return True for xnew which was not inserted.
Provide a bound for this probability which does not depend on n (you can assume
n is larger than 2)

3. We now query the bloom-like filter with m different new objects xnew
1 , . . . , xnew

m .
Provide a value for k such that query(xnew

i ) returns False for all the m new objects
with probability at least 1− δ. Note, the randomness is only the choice of the hash
functions.
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4 Useful facts

1. For any vector x ∈ R
d we define the p-norm of x as follows:

||x||p = [

d∑

i=1

(x(i))p]1/p

2. Markov’s inequality: For any non-negative random variable X :

Pr[X > t] ≤ E[X ]/t.

3. Chebyshev’s inequality: For any random variable X :

Pr[|X − E[X ]| > t] ≤ Var[X ]/t2.

4. Chernoff’s inequality: Let x1, . . . , xn be independent {0, 1} valued random vari-
ables. Each xi takes the value 1 with probability pi and 0 else. Let X =

∑n
i=1 xi

and let µ = E[X ] =
∑n

i=1 pi. Then:

Pr[X > (1 + ε)µ] ≤ e−µε2/4

Pr[X < (1− ε)µ] ≤ e−µε2/2

Or in a another convenient form:

Pr[|X − µ| > εµ] ≤ 2e−µε2/4

5. Hoeffding’s inequality: Let x1, . . . , xn be independent random variables taking
values in {+1,−1} each with probability 1/2, then:

Pr[|

n∑

i=1

xiai| > t] ≤ 2e
−

t
2

∑
n

i=1
a2

i .

6. For any x ≥ 2 we have:

e−1 ≥ (1−
1

x
)x ≥

2

3
e−1

7. For convenience:

3

5
≤ 1− e−1 ≈ 0.632 ≤

2

3
and

3

4
≤ 1−

2

3
e−1 ≈ 0.754 ≤

4

5
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