
Data mining: lecture 5

Edo liberty

Estimating the frequency moments

Assume we have a stream A, of length N which is composed of m different types
of items a1, . . . , am each of which repeats itself n1, . . . , nm times (in arbitrary
order) We define the frequency moments fk as:

fk =
m∑
i=1

nk
i

Our aim to to process the stream in one element at a time and attain an
(ǫ, δ)-approximation. This means, that our estimate is up to multiplicative
factor (1 ± ǫ) with probability at least 1 − δ. Note that f0 is the number of
distinct elements in the stream m and that f1 is the number of elements N . f2
is also an important quantity which represents how ”skewed” the distribution
of the elements in stream is.

Let’s first assume that we know N in advance. This is not necessary and we
will fix it later. But for now, it makes our analysis simpler.

Let us first define a random variable X . We choose an index q ∈ [1, . . . , N ]
uniformly at random. Let a be the element in place q in the stream, i.e. a =
Aq. Define by r the number of times a appears in the stream after location q,
including. In other words r = |{i|Ai = a , i ≥ q}|. We define X :

X = N(rk − (r − 1)k)

We claim that E[X ] = fk. Let us define the variable ei,j which indicates the
event that the index q is such that Aq = ai and ai appears exactly j times after
the location q. Note that the events ei,j are disjoint and that if ei,j happens
than r takes the value j. Therefore, X =

∑
i,j ei,jN(jk − (j − 1)k). Moreover,

Pr[ei,j ] =
ni

N
1
ni

= 1
N since the probability of choosing ai is

ni

N and given that
this happens the probability of each index (out of the locations of ai) is equal
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to 1
ni
.

E[X ] =
∑
i,j

E[ei,jN(jk − (j − 1)k)]

=

m∑
i=1

ni∑
j=1

Pr[ei,j ]N(jk − (j − 1)k)

=

m∑
i=1

ni∑
j=1

(jk − (j − 1)k)

=

m∑
i=1

nk
i = fk .

It is somewhat complicated and tedious to compute the variance of X . Citing
from the paper [] we use the fact that

V ar[X ] ≤ km1−1/kf2
k .

We define Y as the mean of s different copies of X , Y = 1
s

∑s
i=1 Xi. Clearly,

E[Y ] = E[X ] = fk and V ar[Y ] ≤ V ar[X ]/s = km1−1/kf2
k/s. Using Cheby-

shev’s inequality we have that

Pr[|Y − fk| > εfk] ≤
V ar[Y ]

ε2f2
k

≤
km1−1/k

ε2s
≤ δ.

where the last inequality holds if s ≥ km1−1/k

ε2δ .

Estimating f0

This bound is not the most efficient algorithm for approximating the zero’th
frequency moment (which is the number of distinct elements, m). Here we will
describe a more efficient algorithm which is a merging of ideas from [] and [].

First, assume a hash function h : a → [0, 1] uniformly. Let us define a
random variable X = minih(ai). Intuitively, X should be roughly 1/m and
therefore 1/X should be a fair estimate of m. This is almost true. In what
comes next we make this into an exact statement.

Let us first compute the expectation of X . The distribution function fX of
the X is fX(x) = m(1 − x)m−1. This is because, we have m different choices
for the minimal element and for every value it takes, x, all the rest m− 1 values
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need to be higher than it (w.p (1− x)m−1). Therefore, u:

E[X ] =

∫ 1

0

xm(1 − x)m−1dx

=

∫ 1

0

(1 − y)mym−1dy

=

∫ 1

0

mym−1dy −

∫ 1

0

mymdy

= 1−
m

m+ 1
=

1

m+ 1

This is after the substitution y = 1 − x. We now compute the variance of X .
For that we first compute E[X2].

E[X2] =

∫ 1

0

x2m(1− x)m−1dx

=

∫ 1

0

(1− y)2mym−1dy

=

∫ 1

0

mym−1dy −

∫ 1

0

2mymdy +

∫ 1

0

mym+1dy

= 1−
2m

m+ 1
+

m

m+ 2
≤

3

(m+ 1)2

Thus, the standard deviation of σ(X) is in the same order of magnitude as its
expectation E[X ]. To reduce this ratio we again define Y = 1

s

∑s
i=1 Xi for

which E[Y ] = 1
m+1 . and V ar[Y ] ≤ 2

s(m+1)2 .

Using Chebyshev’s inequality we get that

Pr[|Y −
1

m+ 1
| ≥

ε/2

m+ 1
] ≤

8

ε2s
≤ δ

if s ≥ 8
ε2δ . Therefore, multiplying this procedure 8

ε2δ different hash function and
taking their mean minimal value guaranties that with probability at least 1− δ
we have 1

m+1 (1 − ε/2) ≤ Y ≤ 1
m+1 (1 + ε/2). In other words: (m + 1) 1

1+ε/2 ≤
1
Y ≤ (m + 1) 1

1−ε/2 . But, since 1
1−ε/2 ≤ 1 + ε and 1 − ε ≤ 1

1+ε/2 we get the

desired results that (m+ 1)(1− ε) ≤ 1
Y ≤ (m+ 1)(1 + ε)

Estimating f2

We will give here a better estimator of f2. Assume a hash function h : a →
{−1, 1} with probability 1/2 each. Define Z =

∑N
i=1 h(Ai) =

∑m
i=1 nih(ai).

Consider the variable X = Z2. As usual, we will begin with computing the
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expectation and variance of X .

E[X ] = E[Z2] = E[

m∑
i=1

nih(ai)
2]

= E[(

m∑
i=1

nih(ai))(

m∑
i′=1

ni′h(ai′))]

=

m∑
i=1

m∑
i′=1

nini′E[h(ai)h(ai′ )]

=

m∑
i=1

n2
i = f2

Similarly,

E[X2] = E[Z4] =

m∑
i=1

n4
i + 6

∑
1≤i<i′≤m

n2
in

2
i′

V ar[X ] = E[X2]− E2[X ] ≤ 4
∑

1≤i<i′≤m

n2
in

2
i′ ≤ 2f2

Finally, defining Y = 1
s

∑s
i=1 Xi, where each Xi is an independent copy of X

we have that:
Pr[|Y − f2| ≥ εf2] ≤ δ

if s ≥ 2
ε2δ .

Connection to random projections (next class)

Consider the s hash functions hi : a → {−1, 1} we used in estimating the
second frequency moment. Consider the matrix H ∈ R

s×m such that H(i, j) =
hi(j). Also, consider representing each input element ai by ~ai, the i’th standard
basis vector in R

m (the vector whose i’th entry is equal to 1 and the rest are

zero). Analogously, ~Ai is the vector representing the i’th element in the stream.

Remember that our estimate Y of f2 was
1
s

∑s
i=1 Z

2
i = || 1√

s
~Z||2. Moreover, from

the definition of ~Z, H , and ~Ai we have that ~Z =
∑N

i=1 H
~Ai = H

∑N
i=1

~Ai =
1√
s
H ~A. Here, ~A =

∑N
i=1

~Ai = [n1, n2, . . . , nm]. Note however, that f2 = || ~A||2

by definition of the second frequency moment. We get that for any stream and
any element frequencies || 1√

s
H ~A||2 ≈(ε,δ) || ~A||2. In other words, multiplying

any vector ~A by the matrix 1√
s
H is very likely to preserve its norm. We will

see that this phenomenon is in fact more overreaching and has some serious
consequences on point ensembles in high dimensional euclidian spaces.
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