Data mining: lecture 5

Edo liberty

Estimating the frequency moments

Assume we have a stream A, of length N which is composed of m different types
of items aq,...,a, each of which repeats itself ni,...,n,, times (in arbitrary
order) We define the frequency moments fi as:

Our aim to to process the stream in one element at a time and attain an
(e, d)-approximation. This means, that our estimate is up to multiplicative
factor (1 £ €) with probability at least 1 — 6. Note that fy is the number of
distinct elements in the stream m and that f; is the number of elements N. fo
is also an important quantity which represents how ”skewed” the distribution
of the elements in stream is.

Let’s first assume that we know IV in advance. This is not necessary and we
will fix it later. But for now, it makes our analysis simpler.

Let us first define a random variable X. We choose an index ¢ € [1,..., N]
uniformly at random. Let a be the element in place ¢ in the stream, i.e. a =
Aq. Define by r the number of times a appears in the stream after location g,
including. In other words r = |[{i|A; = a, i > q}|. We define X:

X=N@k—(r-1)%

We claim that E[X] = fi. Let us define the variable e; ; which indicates the
event that the index ¢ is such that A, = a; and a; appears exactly j times after
the location q. Note that the events e; ; are disjoint and that if e; ; happens
than 7 takes the value j. Therefore, X =37, . eijN(j* — (j — 1)¥). Moreover,

Prle; ;] = "Wn% = + since the probability of choosing a; is % and given that

this happens the probability of each index (out of the locations of a;) is equal
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It is somewhat complicated and tedious to compute the variance of X. Citing
from the paper [| we use the fact that

Var[X] < km'~Vkf2 .

We define Y as the mean of s different copies of X, Y = % >0 X;. Clearly,
E[Y] = E[X] = f and Var[Y] < Var[X]/s = km!'~'/¥f2/s. Using Cheby-
shev’s inequality we have that

Var[Y] _ km!=Vk
<.
e2f2 — s

Pr{[Y — fil > efi] <

Eml—1/F
€2y

where the last inequality holds if s >

Estimating f

This bound is not the most efficient algorithm for approximating the zero’th
frequency moment (which is the number of distinct elements, m). Here we will
describe a more efficient algorithm which is a merging of ideas from [] and [].

First, assume a hash function h : a — [0,1] uniformly. Let us define a
random variable X = min;h(a;). Intuitively, X should be roughly 1/m and
therefore 1/X should be a fair estimate of m. This is almost true. In what
comes next we make this into an exact statement.

Let us first compute the expectation of X. The distribution function fx of
the X is fx(x) = m(1 — x)™~!. This is because, we have m different choices
for the minimal element and for every value it takes, x, all the rest m — 1 values



need to be higher than it (w.p (1 — 2)™~1). Therefore, u:
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This is after the substitution y = 1 — 2. We now compute the variance of X.
For that we first compute E[X?].

E[X? = /01 2*m(1 — z)™ e
- /(1— y) my™ dy
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Thus, the standard deviation of o(X) is in the same order of magnitude as its
expectation E[X]. To reduce this ratio we again define Y = 137 X, for
which E[Y] = #H and Var[Y] < W
Using Chebyshev’s inequality we get that
1 g/2 8
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if s > %. Therefore, multiplying this procedure % different hash function and
taking their mean minimal value guaranties that with probability at least 1-9§

we have m—+1(1 —g/2) <Y < m+1 (1 +¢/2). In other words: (m+ 1)
+ < (m+ 1)1—5/2' But, since —— < 1+¢e and 1 —

/
desired results that (m + 1)(1 — 5) <3 <(m+1)Q1+ 5)

1+5/2 S
we get the

= 1+/2

Estimating f5

We will give here a better estimator of fo. Assume a hash function h : a —
{~1,1} with probability 1/2 each. Define Z = SN h(4;) = 327", nih(as).
Consider the variable X = Z2. As usual, we will begin with computing the



expectation and variance of X.
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Similarly,
E[X?] = E[ZY=)_n{+6 >  nn
i=1 1<i<i’<m
Var[X] = E[X?|-E’[X]<4 > nln} <2f
1<i<i’<m

Finally, defining ¥ = %Ele X, where each X; is an independent copy of X
we have that:
Pr[[Y — fo] 2 efo] <0

: 2
lfszsg—é.

Connection to random projections (next class)

Consider the s hash functions h; : @ — {—1,1} we used in estimating the
second frequency moment. Consider the matrix H € R**™ such that H(i,j) =
hi(j). Also, consider representing each input element a; by a;, the i’th standard
basis vector in R™ (the vector whose i’th entry is equal to 1 and the rest are

zero). Analogously, A; is the vector representing the ¢’th element in the stream.
Remember that our estimate Y of f, was 1 377 | Z2 = ||ﬁZ||2 Moreover, from
the definition of Z, H, and A; we have that Z = sz\il HA;, = Hzfil A =
%HA. Here, A = "N | A; = [n1,na,...,nm). Note however, that f, = ||A]|?
by definition of the second frequency moment. We get that for any stream and
any element frequencies ||%HA||2 A5 ||A]]?. In other words, multiplying
any vector A by the matrix ﬁH is very likely to preserve its norm. We will

see that this phenomenon is in fact more overreaching and has some serious
consequences on point ensembles in high dimensional euclidian spaces.



