
Data mining: homework 1

Edo liberty

Assignment

1. Describe an algorithm which samples roughly n elements from a stream,
each uniformly and independently at random. More precisely, in every
point in the stream, after processing N elements, each of the elements
a1, . . . , aN should appear in your sample with probability exactly n/N .
Note that you clearly do not know N in advance and that you cannot
reread the stream.

2. Prove the correctness of your algorithm.

3. What is the complexity of processing each element in your algorithm?

4. Bound the probability that your algorithm samples more than 2n elements.

Solution

There are a lot of possible solutions for this problem and anything that works
will be deemed correct.

1. Before describing the algorithm, lets provide some intuition about how
it works. Imagine we choose for each element ai a random number ri
uniformly and independently at random from the range [0, 1]. We can
keep all the elements for which ri ≤ n/N we clearly do the right thing.
The question is, how do we do that when we don’t know N in advance?
The idea is to assume that the current element is the last one in the stream
at every point.

More precisely, when receiving an element ai the algorithm generates a
random number ri uniformly and independently at random from the range
[0, 1]. If ri > n/i the element is ignored. Otherwise, it is kept. Also, in
every step, we go over all the elements aj such that 1 ≤ j ≤ i − 1 and
discard those for which rj > n/i. Note that we had to have kept all the
values rj as well.

2. Clearly, doing this gives the same intuitive solution as above. In other
words, when the stream ends (i = N) we have that our sample contains

1



all the elements aj for which rj ≤ n/N . Since rj are uniformly and inde-
pendently chosen from [0, 1], each element is in the sample independently
with probability n/N .

3. A naive implementation of this algorithm requires O(n) operations per
read element. This is because, in every step we have to go over all the
sampled elements and discard the ones for which rj > n/i. However, if we
keep the picked elements in a sorted list, we can go to the end of the list
and remove only those. This requirs only O(1) operations per removed
element. Or, discarding di elements in step i requires O(di) operations.
This comes with the price of having to insert picked elements into the
sorted list in O(si) operations. Here si denoted the number of samples
that we kept in step i − 1. We denote by zi the indicator variable for
the event that element ai is picked. Let us compute the expected running
time of this algorithm T (N,n).

E[T (N,n)] =

N∑
i=1

E[Cost of step i] (1)

=

N∑
i=1

[E[O(si)zi] +O(di)] (2)

= O(

N∑
i=1

n2

i
+N) (3)

= O(n2 log(N) +N) (4)

We used here that si and zi are independent so E[O(si)zi] = O(E(si))E[zi].
Also,

∑n
i=1 di ≤ N and

∑n
i=1

1
i ≈ log(N). Amortizing over the length of

the stream we get that the expected cost per element is T (N,n)/N =

O(n
2 log(n)
N + 1) which is O(1) if the stream is long enough, i.e. n2 log(N)

N ≤
1.

Alternatively, we can keep all the picked elements in a sorted heap accord-
ing to the r values which results in O(log(n)) operations per insertion and
deletion (amortized)

4. Bounding the probability of sampling more than 2n elements can be done
using the Chernoff bound.

Pr[X > (1 + ε)µ] ≤ e−µε
2/4

We have that µ = E[sN ] = n and ε = 1. Thus:

Pr[sN > 2n] ≤ e−n/4 .

We can also make sure that in no point in the algorithm we have si > 2n
by the union bound. Making sure that in all N steps of the algorithm this

2



happens with probability at least 1 − δ.

n∑
i=1

Pr[si > 2n] ≤ Ne−n/4 ≤ δ .

This is true if n > 4 log(Nδ ).

3


