Data mining: homework 2

Edo liberty

The setup is as follows. We have a universe of N items $A = \{a_1, \ldots, a_N\}$ and m subsets $S_i \subset A, i \in \{1, \ldots, m\}$. We assume that given a set S_i we can iterate over its elements one by one. The exercise will deal with approximating the size of different unions of these sets.

- 1. In case you wanted to give an ε approximation, w.p. 1δ , to the size of $S_1 \cup S_2$. How would your ability to approximate the zero'th frequency moment in streams help you with that? (We assume here that $O(|S_1| + |S_2|)$ running time is acceptable, and that ε and δ are both constants)
- 2. Assuming it is only possible to compute the second frequency moment of streams, one can still give an ε approximation, w.p. 1δ , to the size of $S_1 \cup S_2$. How?
- 3. Assume now that you are tasked with designing an algorithm. Your algorithm is allowed to preprocess the sets S_i in any amount of time and produce any data structure. It should then be able to take as input a set of indexed $I \in \{1, \ldots, m\}$ and produce an ε approximation of $|\bigcup_{i \in I} S_i|$ with probability at least 1δ . The aim is to create an algorithm which runs in time $o(\sum_{i \in I} |S_i|)$, i.e., the solution from question 1 is not the answer. It is assumed that for all $i, |S_i| \in \omega(1)$.
 - describe the preprocessing stage and its resulting data structure. (before *I* is given)
 - describe the estimation process. (after I is given)
 - prove your algorithm's correctness.
 - give the space usage of your data structures.
 - give the runtime complexity your estimation process.