
Data mining: homework 2

Edo liberty

The setup is as follows. We have a universe of N items A = {a1, . . . , aN}
and m subsets Si ⊂ A, i ∈ {1, . . . ,m}. We assume that given a set Si we can
iterate over its elements one by one. The exercise will deal with approximating
the size of different unions of these sets.

1. In case you wanted to give an ε approximation, w.p. 1 − δ, to the size
of S1 ∪ S2. How would your ability to approximate the zero’th frequency
moment in streams help you with that? (We assume here that O(|S1| +
|S2|) running time is acceptable, and that ε and δ are both constants)

2. Assuming it is only possible to compute the second frequency moment of
streams, one can still give an ε approximation, w.p. 1 − δ, to the size of
S1 ∪ S2. How?

3. Assume now that you are tasked with designing an algorithm. Your al-
gorithm is allowed to preprocess the sets Si in any amount of time and
produce any data structure. It should then be able to take as input a set of
indexed I ⊂ {1, . . . ,m} and produce an ε approximation of | ∪i∈I Si| with
probability at least 1 − δ. The aim is to create an algorithm which runs
in time o(

∑
i∈I |Si|), i.e., the solution from question 1 is not the answer.

It is assumed that for all i, |Si| ∈ ω(1).

• describe the preprocessing stage and its resulting data structure. (be-
fore I is given)

• describe the estimation process. (after I is given)

• prove your algorithm’s correctness.

• give the space usage of your data structures.

• give the runtime complexity your estimation process.

Solutions

1. Consider concatenating the two sets S1 and S2 into a stream

A = [S1(1), S1(2), . . . , S1(|S1|), S2(1), . . . , S2(|s2|)]

where the order of the elements in S1 and S2 is arbitrary. It is quite
immediate to see that the number of distinct elements in the stream, f0(A),

1

is exactly |S1∪S2|. More explicitly, the items in S1∩S2 appear twice in the
stream A and all others appear once. Therefore, f0(A) = |A|− |S1∩S2| =
|S1|+ |S2| − |S1 ∩S2| = |S1 ∪S2|. Given our ability to approximate f0(A)
frequency moments using O(1/ε2δ) space and O(|A|/ε2δ) operations we
conclude that a running time of O(|S1 ∪ S2|) is sufficient. We used that ε
and δ are constant and that 2|S1 ∪ S2| ≥ |S1|+ |S2||.

2. Since each item in S1 ∩ S2 appears twice in the stream A and all others
appear once we have the following expression for f2(A).

f2(A) = |S1 \ S2|+ |S2 \ S1|+ 4|S2 ∩ S1| = |A|+ 2|S2 ∩ S1|

Moreover, |S1 \ S2|+ |S2 \ S1| = |S2 ∪ S1| − |S2 ∩ S1|. Also since f0(A) =
|A| − |S2 ∩ S1| we have that f0(A) = (3|A| − f2(A))/2. Thus, since we
know |A| exactly, if we could approximate f2(A) we could also approximate
f0(A). Note that to insure the approximation factor is still constant we
must have that εf2(A)/2 ≤ εf0(A) which is indeed true.

3. • We first choose s ≥ 8/ε2δ hash functions hi : a → [0, 1] uniformly.
For each set Si of the m sets we compute for each hash function hj

its minimal value over the elements of Si. Storing these concludes
the preprocessing step which requires O(s

∑m

i=1
|Si|) hash evaluations

and O(sm) storage. Note that here we assume that the number of
elements in the universe n is such that log(n) is small enough to
be treated as a constant. Otherwise, the hash functions must con-
tain Ω(log(n)) bits which would give anO(s log(n)

∑m

i=1
|Si|) running

time and O(sm log(n)) storage.

• Once I is received, we compute the s minimal values over the sets Si

s.t. i ∈ I for each hash function. This is done simply by taking the
minimal values from the ones already computed in the preprocessing
step. Denoting by xj this minimal value (for hash function hj) we
return 1

1

s

∑
s

i=1
xi

.

• The proof is identical to a proof given in the class (and the class
notes) so I will only repeat it here. The main statement is that the
reciprocal to the mean of s ≥ 8/ε2δ minimal hash value over a set
of n′ objects is an ε approximation to n′ with probability at least
1 − δ. The algorithm clearly computes these minimal values for the
set ∪i∈ISi which completes the proof.

• The amount of space is as stated before O(sm) = O(8m/ε2δ) or
O(8m log(n)/ε2δ) depending on the computational model.

• Given that all sm minimal hash values are given in an array with
O(1) access time, the amount of time to compute the approximated
size of ∪i∈ISi is O(s|I|).

2

