
Data mining: lecture 6

Edo liberty

We will give a simple proof of the following, rather amazing, fact. Every set
of n points in Euclidian space (say in dimension R

d) can be embedded into the
Euclidian space of dimension O(log(n)/ε2) such that all pairwise distances are
preserved up distortion 1± ε.

Random projection

We will argue that a certain distribution over the choice of a matrix R ∈ R
k×d

gives that:
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Before we show this distribution and show that Equation 1 holds for it, let us
first see that this will gives the opening statement.

Consider a set of n points x1, . . . , xn in Euclidian space R
d. Embedding

these points into a lower dimension while preserving all distances between them
up to distortion 1 ± ε means approximately preserving the norms of all

(

n
2

)

vectors xi − xj . Assuming Equation 1 holds and using the union bound, this
property will fail to hold for at least one xi − xj pair with probability at most
(
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)

1
n2 ≤ 1/2. Which means that all
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point distances are preserved up to
distortion ε with probability at least 1/2.

1 I.i.d gaussian distribution

We consider the distribution of matrices R such that each R(i, j) is drawn inde-
pendently from a normal distribution with mean zero and variance 1, R(i, j) ∼
N (0, 1). We will show that for this distribution Equation 1 holds for some
k ∈ O(log(n)/ε2).

First consider the random variable z =
∑d

i=1 r(i)x(i) where r(i) ∼ N (0, 1).
To understand how the variable z distributes we recall the two-stability of the
normal distribution. Namely, if z3 = z2 + z1 and z1 ∼ N (µ1, σ

2
1) and z2 ∼

N (µ2, σ
2
2) then, z3 ∼ N (µ1 + µ2, σ

2
1 + σ2

2). In our case, r(i)x(i) ∼ N (0, x2
i ) and

therefore, z =
∑d

i=1 r(i)x(i) ∼ N (0,
∑d

i=1 x
2
i ) = N (0, ||x||2) = ||x|| · N (0, 1).

Now, note that each element in the vector Rx distributes exactly like z. Defining
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k identical copies of z, z1, . . . , zk, We get that || 1√
k
Rx|| distributes exactly like:
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where yi ∼ N (0, 1). Thus, proving Equation 1 reduces to showing that:
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It is now straight forward to show since the sum of k squared normal vari-
ables is a very known distribution called chi-square with k degrees of freedom.
(χ2

k). More accurately, it is defined by χ2
k =

∑k
i=1 y

2
i where yi ∼ N (0, 1)

which is exactly what we have. Since χ2
k is a sum of independent random

variables, due to the central limit theorem, χ2
k converges to a normally dis-

tributed quantity as k grows. We will use here a slightly different property:
√

χ2
k ∼k→∞ N (

√
k, 1/2). Somewhat sloppily, we will assume that k is large

enough so that assuming
√
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√
k, 1/2) is harmless.
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only need to show that for a random variable Z ∼
√
2k

[

√

1
k

∑k
i=1 y

2
i − 1

]

∼

,
√
2kN (0, 1

2k ) ∼ N (0, 1) it holds that
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We now use a bound on the error function:
∫∞

t=ε
√
2k

1√
2Π

e−t2/2dt = erf(ε
√
2k) ≤

e−ε2k. Since Pr[Z > ε
√
2k] = Pr[Z < −ε

√
2k]we demand that e−ε2k ≤ 1

2n2 .

This yields the bound k ≥ 2 log(n)+1
ε2 .
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