
Data mining: lecture 2

Edo liberty

Suppose you work for a company that runs a popular search engine. Also,
suppose you are a top engineer there and your boss comes to you and asks:
”Say, can you check how many people visit the second results page and then
return to the first one? And while you’re at it, how does it compare to last
year’s numbers?”. Having not anticipated this question in advance, you would
have been in a serious predicament was it not for that data mining class you
once took... So, you made sure to keep a decently sized running uniform sample
of all search interactions. You quickly compute the number of such events in
the sample, multiply by the right scaling coefficient and get the answer. Your
boss loves you.

1 Sampling

Given a large set of elements U , (|U | = N) select a subset of elements Û (|Û | ≈
n) such that from Û the size of any subset S ⊂ U can be estimated.1 Pick each
element from U independently into our set Û with probability p = n/N . Let
the variable Xi be 1 if element i is picked and 0 else. The number of picked
elements is

∑N
i=1

Xi and its expectation is

E[

N
∑

i=1

Xi] =

N
∑

i=1

E[Xi] =

N
∑

i=1

n

N
= n

Let Ŝ be the set of elements both in S and in Û , i.e., Ŝ = S∩Û . Equivalently,
let si be 1 if item i is in S and zero else. Let Z = N

n |Ŝ| be our estimator of |S|:

E[Z] =
N

n

N
∑

i=1

E[Xisi] =
N

n

|S|
∑

j=1

n

N
= |S|

The question is: how close is Z to |S|? For this we need the Chernoff bound.

Lemma 1.1 (Chernoff bound) Let X1, . . . , Xn be independent Bernoulli tri-

als Pr[Xi = 1] = pi. And let X =
∑n

i=1
Xi and µ = E[X] =

∑n
i=1

pi.

Pr[X > (1 + ε)µ] ≤ e−µε2/4 (1)

Pr[X < (1− ε)µ] ≤ e−µε2/2 (2)

1It us easy to see that no deterministic algorithm can achieve this.

1

We will prove this soon but let’s first use it to solve our problem.
In our case, we go over the elements of S and count how many of them were

sampled into Û . Since each element is taken independently with probability
p = n/N we have that µ = E[X] = |S|n/N . Substituting into the Chernoff
bound we get:

Pr[X > (1 + ε)|S|n/N] ≤ e−|S|nε2/4N (3)

Pr[X < (1 − ε)|S|n/N] ≤ e−|S|nε2/2N (4)

Or, using the union bound (below) and substituting Z = XN/n:

Pr[|Z − |S|| > ε|S|] ≤ 2e−|S|nε2/4N

By demanding that e−|S|nε2/4N ≤ δ (the failure probability be less than δ) we
get:

n ≥
4

ε2
N

|S|
log(

2

δ
)

For example, if |S| is the size of 10−5N and we want to have a 10% accuracy
with probability at least 0.99, we must keep a sample of roughly 250, 000, 000
elements, regardless of N . That doesn’t sound like a small number but con-
sider that fact that this is roughly the number of search sessions per one day!
(according to external reports)

2 The union bound

Lemma 2.1 For any set of m events A1, . . . , Am:

Pr[∪m
i=1Ai] ≤

m
∑

i=1

PrAi.

In words, the probability that one or more events happen is at most the sum of
the individual event probabilities.

This simple notion is going to become very handy. Given the above setup,
assume we want to estimate size of m different subsets on the same sampled set
and assume that we are not willing to compromise on the quality. This means
that we demand:

∀i Pr[
∣

∣Zi − |Si|
∣

∣ > ε|Si|] ≤ δ

Let fi be the event that we fail in estimating the size of Si, i.e.,
∣

∣Zi − |Si|
∣

∣ >
ε|Si|.

Pr[∪m
i=1fi] ≤

m
∑

i=1

Pr[fi] ≤ mmax(Pr[fi])

Or, the probability of failure in at least one event out of m is at most m times
the maximal probability of failure. By demanding that mmax(Pr[fi]) ≤ δ we

2

succeed in all events.

max
i

2e−|Si|nε
2/4N ≤ δ/m → n ≥

4

ε2
N

min |Si|
log(

2m

δ
)

Note that we only ”pay” a logarithmic factor in m. Thus, sampling only a
slightly larger set guarantees us accuracy for a very large number of different
sets simultaneously.

3 Ficher Yates shuffling

Suppose you need to shuffle a very long stream of elements. How would you go
about doing that? The algorithm goes as follows: go over the elements one by
one. In step i generate a random number j between 0 and i and switch elements
ai and aj (if i = j then ai remains in place). To prove this gives a truly uniform
shuffle of the vector, we prove that each element is places in any location with
probability exactly 1/n. We prove this by recursion. Assume that after k steps
all the elements {a1, . . . , ak} are uniformly shuffled, i.e. Pr[ai is in position j] =
1/k for all i, j ≤ k. Now, advance one step in the algorithm. Element ai is in
position j ≤ k only if it was there in the last step of the algorithm (w.p. 1/k)
and if it was not swapped with ak+1, w.p. k/(k+1). Multiplying the two gives
1/(k+1). The element occupying the last position and the position of ak+1 are
trivial. This completes the proof by induction.

4 Reservoir Sampling

In reservoir sampling, we want to keep exactly n elements out of a stream of N
uniformly at random. The trivial thing to do is to shuffle the stream and take
the first n. This is clearly correct but can we do any better?

We can simulate the Fisher-Yates algorithm and discard any element which
is out of the range of [0, . . . , n]. In other words, do the following: First, take the
first n elements in the stream. For element ai in the stream, generate a random
number r between 0 and i. If r ≥ n discard the element. If r < n, discard
element r from your collection and insert element ai (the indices begin at zero).

3

