General Info

1. Solve 3 out of 4 questions.
2. Each correct answer is worth 33.3 points.

3. If you have solved more than three questions, please indicate which three you would
like to be checked.

4. The exam’s duration is 3 hours. If you need more time please ask the attending
professor.

5. Good luck!

Useful facts

1. For any vector € R? we define the p-norm of z as follows:
d

llellp = I (()")'”

i=1
2. Markov’s inequality: For any non-negative random variable X:
Pr[X > t] < E[X]/t.
3. Chebyshev’s inequality: For any random variable X:
Pr|X — E[X]| > t] < Var[X]/t%.
4. Chernoff’s inequality: Let x1,...,z, be independent {0, 1} valued random vari-

ables. Each z; takes the value 1 with probability p; and 0 else. Let X = E?Zl T;
and let 4 = E[X] =" | p;. Then:
PriX > (1+e)y] et /A

PriX <(1—e)] < ehet/?

IN

Or in a another convenient form:
Pr(|X — p| > ep] < 2eH/4
5. Hoeffding’s inequality: Let x1,...,z, be independent random variables taking
values in {+1, —1} each with probability 1/2, then:
n 7 +2
Pr]| in(m >t <2 Timiel,
i=1

6. For any x > 2 we have:

1 2
—1> 1__1>_—1
e > ( x) _36
7. For convenience:
3 2 3 2 4
S<1—et20632< 2 d S<1-Zelm0754<=
F= ¢ =3 e p=rT3e =5



1

Probabilistic inequalities

setup

In this question you will be asked to derive the three most used probabilistic inequalities
for a specific random variable. Let z1,...,2, be independent {—1,1} valued random
variables. Each z; takes the value 1 with probability 1/2 and —1 else. Let X = > | ;.

questions

1.

Let the random variable Y be defined as Y = | X|. Prove that Markov’s inequality
holds for Y. Hint: note that Y takes integer values. Also, there is no need to
compute Pr[Y = i].

Prove Chebyshev’s inequality for the above random variable X. You can use the fact
that Markov’s inequality holds for any positive variable regardless of your success
(or lack of if) in the previous question. Hint: Var[X]| = E[(X — E[X])?].

. Argue that

BT e?]

Pr[X > a] = Pr[lTl_ e > ] < a

for any A € [0, 1]. Explain each transition.

. Argue that:

BT er] IR, Bler™]  (E[eA])

eAa e)xa e)xa

What properties of the random variables z; did you use in each transition?

. Conclude that Pr[X > a] < e~ by showing that:

Az1]\n 2
B _ g

I Ae0,1] s.t. v <

e

Hint: For the hyperbolic cosine function we have cosh(z) = %(ew +e ) < /2 for
x € 10,1].



answers

1.

ElY] = Y Prly=i]-i
=0
= Y Py =il-i+ Y Pry=i]i
=0 i=t+1

> Pry =i]-i

i=t+41

Y

n

> > PrY =]t

i=t+1

Therefore, E[Y] > ¢ - Pr[Y > t] which is Markov’s inequality.

2. This is identical to the general proof of Chebyshev’s inequality. We define Z =
(X — E[X])2. Since Z is positive we can use Markov’s inequality for it and get:
E|Z] Var[X]
2 2

Pr[|X — E[X]| > t] = Pr[Z > t?] <

Here we used that E[Z] = E[(X — E[X])?] = Var[X].
3. First transition:
Pr[X > a] = Pr]AX > Aa] = Pr[e*™ > €] = Pr[e? 2% > 2] = Pr[IlT e > &9

These hold due to the monotonicity of multiplication by a positive constant and
exponentiation. Now, using Markov’s inequality on the last inequality we get:

B[} e’

Az A =1

Pr[IIi e > e a]gleT

4. The first transition is true due to the independence of the variables z;. This means
that e’ are independent. The second transition is due to all expectations of e®:
being equal which stems from x; being identically distributed.

5. First, we compute the expectation of e

1 1
B[] = Se + 5e* = cosh()) < N/

From the above we have that Pr[X > a] < e"’/272a_ Setting A = a/n we get

2 a2 .
e\ /2=2a — ¢= 35 which concludes the proof.



2 Approximating the size of a graph

setup

In this question we will try to approximate the size of a graph. A graph G(V, FE) is a set
of nodes |V| = n and a set of edges |E| = m. Each edge e € V x V is a set of two nodes
which support it. We assume the graph is simple which means there are no duplicate
edges and no self loops (i.e. an edge e = (u,u)). The degree of a node, deg(u), is the
number of edges which it supports. More formally deg(u) = |{e € E|u € e}|. The degree
of each node in the graph is at least 1. The question refers to the following sampling
procedure:

1. e = (u,v) < an edge uniformly at random from E.

2. with probability 1/2

3. return u
4. else
5. return v

Throughout this question we assume that i) we can sample edges uniformly from the
graph #i) that the value of m in known 4i7) that given a node u we can compute deg(u).
The value of n, however, is unknown.

questions
1. Let p(u) denote the probability that the sampling procedure returns a specific node,
u. Compute p(u) as a function of deg(u) and m. (Note: ) .y deg(u) = 2m)

2. Let f(u) = dezgu). Compute:

Ez~smp[f(x)]

where x ~ smp denotes that x is chosen according to the distribution on the nodes
generated by the above sampling procedure.

3. We say that a graph is d-degree-bounded if max,cy deg(u) < d. Show that for a
d-degree-bounded graph:
Varg wsmp[f ()] < dn?

4. Let Y = %Zle f(z;) where z; are nodes chosen independently from the graph
according to the above sampling procedure. Compute E[Y] and show that Var[Y] <
dn?/s.

5. Use Chebyshev’s inequality to find a value for s such that for for any d-degree-
bounded graph and any two constants € € [0,1] and 6 € [0, 1]:

Pr|Y —n| > en] < é.

s should be a function of d, € and §.



answers

1. A node is chosen only if an edge it is adjacent to is picked with probability and then
it is the node picked between the two. The first event happens with probability
deg(u)/m since the edges a re chosen uniformly at random. The second event

happens with probability 1/2 independently of the first event. This gives p(u) =
deg(u) deg(2) _ deg(u)
m 2 2m

2. By the definition to the expectation:

deg(u) 2m

Baompf(2)] = Do p(u)f () = 3 020 = 3 1=
ueV ueV ueV

~—

3. We say that a graph is d-degree-bounded if max,cy deg(u) < d. Show that for a
d-degree-bounded graph:

ar T 2(2)] = —deg(u) 22 = o

Since deg(u) > 1 then > #’&) < Y uev &% = 2mn. Also, since the graph is
d-degree-bounded 2m = Y, ., deg(u) < nd thus 2mn < dn?.

4. Y is the average of s independent copies of f(z) and therefore, by linearity of
the expectation, we have that F[Y] = E[f] = n. Moreover, Since the nodes z;
are chosen independently we have that Var[Y] = % >, Var[f(z;)]. Since f(;)
distribute identically and substituting Var(z) < dn? we get & .7, Var[f(z;)] <
Zdn?® = dn?/s.

5. Since E[Y] = n we get that the above holds if

Var[Y]
e2n?

< dn?/s _

PrllY — F —
rf| [n]| > en] < o272 522

The condition that % < § holds for s > %



3 Approximate median

setup

Given a list A of n numbers aq,...,a,, we define the rank of an element r(a;) as the
number of elements which are smaller than it. For example, the smallest number has
rank zero and the largest has rank n — 1. Equal elements are ordered arbitrarily. The
median of A is an element a such that r(a) = n/2 (rounded either up or down). An
a-approximate-median is a number a such that:

n(1/2 —a) <r(a) <n(l/2+ )

In this question we sample k elements uniformly at random with replacement from the
list A. Let the samples be {z1,...,2;} = X. You will be asked to show that the median
of X is an a-approximate-median of A.

questions

1. What is the probability the a randomly chosen element z is such that:
r(z) >n(1/2+ «)

2. Let us define X-, as the set of samples whose rank is greater than n(1/2 4+ «).
More precisely, Xsqo = {z; € X|r(z;) > n(1/2 + «)}. Similarly we define X, =
{z; € X|r(z;) <n(l/2—a)}. Prove that if | Xs,| < k/2 and |X<o| < k/2 then the
median of X is an a-approximate-median of A.

3. Let Z = |Xsq|. Find ¢ for which:
Pr[Z > k/2] =Pr[Z > (1 + t)E[Z]]
4. Bound from above the probability that Z > k/2 as tightly as possible. If you do so
using a probabilistic inequality, justify your choice.

5. Compute the minimal value for k which will guarantee that |Xs,| < k/2 and
|X<a| < k/2 with probability at least 1 — .



answers

1.

There are n(1/2 — «) elements for which r(x) > n(1/2 + «). Since the element is
chosen uniformly, the probability of that happening is (1/2 — «).

. First we note that the median of X cannot be either in X~ or in X.,. This is

simply because each of them includes less than half of the elements in X. Moreover,
by the definitions of X, and X, we have:

n(1/2 — a) < r(median(X)) and r(median(X)) <n(1/2+ )
which means that median(X) is an a-approximate-median of A.

Since the probability of a sample being in X, is exactly 1/2 — «a and since we have
k independent samples, E[Z] = E[|Xsq|] = k(1/2 — «). Solving for t we get

(1+0E[Z]=k/2 — (1+t)(1/2—a)=1/2 — t=

. Since the value of Z is the sum of independent indicator variables we can apply

Chernoff’s inequality. Denoting = E[Z] = k(1/2 — ) and t = 12— we have:

Pr(Z > k/2] = Pr[Z > (1 + t)p] < e #/4

. Similarly to the the above we can argue that

Pr[|Xco| > /2] < e H/4

From the union bound we have that the probability of the event that |X<.| > k/2
or that | Xs4| > k/2 is at most the sum of their probabilities.

Pr{|Xca| > k/2U[Xsa| > k/2] < Pr{|Xca| > k/2] + Pr[|Xsa| > k/2] < 2e1°/4

Demanding that this failure probability is less than § we guarantee success with
probability at least 1— 4. Substituting u = k(1/2—a) and ¢ = 2% this is achieved

for -
41og(2/0)(1/2 — )
2

2 M5 5 k>



4 Soulmate search

setup

In this question you will be asked to derive a search algorithm for a unique nearest
neighbor given a local sensitive hash function family. We assume a universe of n objects
x1,...,%, and a distance function d. For any pair of points 0 < d(z;,z;) < 1. Moreover,
each point z; has exactly one soulmate point x; such that d(z;,z;) < r, r is known
constant. For all other points in the universe d(x;, z;/) > 2r. You are given a family H of
hash functions such that Pry~m[h(z;) = h(z;)] = m for any pair (h ~ H means
that h is chosen uniformly from H). We also define a bucketing hash function g which
accepts an element x and returns a list of hash values.

9(x) = [hi(2), ..., hi()]

where each of the hush functions hq, ..., hy was chosen uniformly and independently from
the family H. We say that z; and z; are in love if g(z;) = g(x;).

questions

1. What is the probability of two points, whose distance is d(x;, z;), falling in love?

2. Compute a value for k for which the probability that z; and z; who are not soulmates
(d(zi,x;) > 2r) of falling in love is at most 1/n. Or, find k for which the following
holds:

Prig(xi) = g(x;) | d(wi, x;) = 2r] < 1/n

3. For this value of k, what is the probability that x; falls in love with her soulmate?
That means Prlg(z;) = g(z;) | d(z;,z;) < r]. Help: you can use the approximation
log(14+r) __ 1
log(1+2r) ~ 2°

4. We now create m independent copies of g, gi,...,gm. We say that z; finds z; if
ge(x;) = ge(x;) for at least one function gy. Give a bound on the value of m which
insures that all z; find their soulmates with probability at least 1 — 67

5. Given the above value for m, bound from above the expected number of points z;
that x; fell in love with which were not her soulmates.



answers

1.

Since each of the hash functions was chosen independently, we have that for each
Prlhe(z;) = he(z;)] = m For z; and x; to be in love this must hold for all

k hash functions which happens with probability m

. Using the expression from the previous question for two points for which d(x;, z;) >

2r we have:
1 1
<
(1+d($i,$j))k - (1+2T‘
L loan)

L <1/n

—  log(1+2r)
St . _ _log(n) .
Substituting d(z;,z;) <r and k = Toa(i 2] We get:
Prlg(z:) = 9(a)] e
r[g(z;) = g(z; >
I I (I dGw,a)F = T+

og(n) log(1+4r)
— (1 + /r') 10g(1+2T) =n T Tog(1F2r) == n71/2

. . . log(14r) 1
which uses the approximation Tog(it2) ~ 2

. For a point to fail in finding her soulmate, it must fail in falling in love m consecutive

times. The probability of one point failing is therefore (1 — n~'/2)™. By the union
bound, the probability of any of the n points failing is at most n(1 — n=1/2)™
demanding that this is bounded by § yields:

n(l—n"Ym xpe ™V <§ m > y/nlog(n/d)

. We can denote by Z; ; , the event that point x; and x; are such that d(z;,z;) > 2r

and g;(z;) = ge(x;). The number of points that x; falls in love with is bounded
by S°i Uk Zi ;¢. Using the linearity of expectation and the fact that Pr[Z; ;, =
1] <1/n we have that:

ZUZ Zigd SED Y Zijd =3 ElZijg] <> > 1/n=m
=1

i=1 (=1 i=1 (=1 =1 4=1



