
General Info

1. Solve 3 out of 4 questions.

2. Each correct answer is worth 33.3 points.

3. If you have solved more than three questions, please indicate which three you would
like to be checked.

4. The exam’s duration is 3 hours. If you need more time please ask the attending
professor.

5. Good luck!

Useful facts

1. For any vector x ∈ R
d we define the p-norm of x as follows:

||x||p = [
d∑

i=1

(x(i))p]1/p

2. Markov’s inequality: For any non-negative random variable X :

Pr[X > t] ≤ E[X ]/t.

3. Chebyshev’s inequality: For any random variable X :

Pr[|X − E[X ]| > t] ≤ Var[X ]/t2.

4. Chernoff’s inequality: Let x1, . . . , xn be independent {0, 1} valued random vari-
ables. Each xi takes the value 1 with probability pi and 0 else. Let X =

∑n
i=1 xi

and let µ = E[X ] =
∑n

i=1 pi. Then:

Pr[X > (1 + ε)µ] ≤ e−µε2/4

Pr[X < (1− ε)µ] ≤ e−µε2/2

Or in a another convenient form:

Pr[|X − µ| > εµ] ≤ 2e−µε2/4

5. Hoeffding’s inequality: Let x1, . . . , xn be independent random variables taking
values in {+1,−1} each with probability 1/2, then:

Pr[|
n∑

i=1

xiai| > t] ≤ 2e
− t2

∑n
i=1

a2
i .

6. For any x ≥ 2 we have:

e−1 ≥ (1− 1

x
)x ≥ 2

3
e−1

7. For convenience:

3

5
≤ 1− e−1 ≈ 0.632 ≤ 2

3
and

3

4
≤ 1− 2

3
e−1 ≈ 0.754 ≤ 4

5
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1 Probabilistic inequalities

setup

In this question you will be asked to derive the three most used probabilistic inequalities
for a specific random variable. Let x1, . . . , xn be independent {−1, 1} valued random
variables. Each xi takes the value 1 with probability 1/2 and −1 else. Let X =

∑n
i=1 xi.

questions

1. Let the random variable Y be defined as Y = |X |. Prove that Markov’s inequality
holds for Y . Hint: note that Y takes integer values. Also, there is no need to
compute Pr[Y = i].

2. Prove Chebyshev’s inequality for the above random variableX . You can use the fact
that Markov’s inequality holds for any positive variable regardless of your success
(or lack of if) in the previous question. Hint: Var[X ] = E[(X − E[X ])2].

3. Argue that

Pr[X > a] = Pr[Πn
i=1e

λxi > eλa] ≤ E[Πn
i=1e

λxi ]

eλa

for any λ ∈ [0, 1]. Explain each transition.

4. Argue that:
E[Πn

i=1e
λxi ]

eλa
=

Πn
i=1E[eλxi ]

eλa
=

(E[eλx1 ])n

eλa

What properties of the random variables xi did you use in each transition?

5. Conclude that Pr[X > a] ≤ e−
a2

2n by showing that:

∃ λ ∈ [0, 1] s.t.
(E[eλx1 ])n

eλa
≤ e−

a2

2n

Hint: For the hyperbolic cosine function we have cosh(x) = 1
2 (e

x+ e−x) ≤ ex
2/2 for

x ∈ [0, 1].
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answers

1.

E[Y ] =

n∑

i=0

Pr[Y = i] · i

=

t∑

i=0

Pr[Y = i] · i+
n∑

i=t+1

Pr[Y = i] · i

≥
n∑

i=t+1

Pr[Y = i] · i

≥
n∑

i=t+1

Pr[Y = i] · t

= t · Pr[Y > t]

Therefore, E[Y ] ≥ t · Pr[Y > t] which is Markov’s inequality.

2. This is identical to the general proof of Chebyshev’s inequality. We define Z =
(X − E[X ])2. Since Z is positive we can use Markov’s inequality for it and get:

Pr[|X − E[X ]| > t] = Pr[Z > t2] ≤ E[Z]

t2
=

Var[X ]

t2

Here we used that E[Z] = E[(X − E[X ])2] = Var[X ].

3. First transition:

Pr[X > a] = Pr[λX > λa] = Pr[eλX > eλa] = Pr[eλ
∑

xi > eλa] = Pr[Πn
i=1e

λxi > eλa]

These hold due to the monotonicity of multiplication by a positive constant and
exponentiation. Now, using Markov’s inequality on the last inequality we get:

Pr[Πn
i=1e

λxi > eλa] ≤ E[Πn
i=1e

λxi ]

eλa

4. The first transition is true due to the independence of the variables xi. This means
that eλxi are independent. The second transition is due to all expectations of eλxi

being equal which stems from xi being identically distributed.

5. First, we compute the expectation of eλxi

E[eλxi ] =
1

2
eλ +

1

2
e−λ = cosh(λ) ≤ eλ

2/2

From the above we have that Pr[X > a] ≤ enλ
2/2−λa. Setting λ = a/n we get

enλ
2/2−λa = e−

a2

2n which concludes the proof.
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2 Approximating the size of a graph

setup

In this question we will try to approximate the size of a graph. A graph G(V,E) is a set
of nodes |V | = n and a set of edges |E| = m. Each edge e ∈ V × V is a set of two nodes
which support it. We assume the graph is simple which means there are no duplicate
edges and no self loops (i.e. an edge e = (u, u)). The degree of a node, deg(u), is the
number of edges which it supports. More formally deg(u) = |{e ∈ E|u ∈ e}|. The degree
of each node in the graph is at least 1. The question refers to the following sampling
procedure:

1. e = (u, v)← an edge uniformly at random from E.

2. with probability 1/2

3. return u

4. else

5. return v

Throughout this question we assume that i) we can sample edges uniformly from the
graph ii) that the value of m in known iii) that given a node u we can compute deg(u).
The value of n, however, is unknown.

questions

1. Let p(u) denote the probability that the sampling procedure returns a specific node,
u. Compute p(u) as a function of deg(u) and m. (Note:

∑
u∈V deg(u) = 2m)

2. Let f(u) = 2m
deg(u) . Compute:

Ex∼smp[f(x)]

where x ∼ smp denotes that x is chosen according to the distribution on the nodes
generated by the above sampling procedure.

3. We say that a graph is d-degree-bounded if maxu∈V deg(u) ≤ d. Show that for a
d-degree-bounded graph:

Varx∼smp[f(x)] ≤ dn2

4. Let Y = 1
s

∑s
i=1 f(xi) where xi are nodes chosen independently from the graph

according to the above sampling procedure. Compute E[Y ] and show that Var[Y ] ≤
dn2/s.

5. Use Chebyshev’s inequality to find a value for s such that for for any d-degree-
bounded graph and any two constants ε ∈ [0, 1] and δ ∈ [0, 1]:

Pr[|Y − n| > εn] < δ.

s should be a function of d, ε and δ.
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answers

1. A node is chosen only if an edge it is adjacent to is picked with probability and then
it is the node picked between the two. The first event happens with probability
deg(u)/m since the edges a re chosen uniformly at random. The second event
happens with probability 1/2 independently of the first event. This gives p(u) =
deg(u)

m
deg(2)

2 = deg(u)
2m .

2. By the definition to the expectation:

Ex∼smp[f(x)] =
∑

u∈V

p(u)f(u) =
∑

u∈V

deg(u)

2m

2m

deg(u)
=

∑

u∈V

1 = n

3. We say that a graph is d-degree-bounded if maxu∈V deg(u) ≤ d. Show that for a
d-degree-bounded graph:

Varx∼smp[f(x)] ≤ Ex∼smp[f
2(x)] =

∑

u∈V

deg(u)

2m
(

2m

deg(u)
)2 =

∑

u∈V

2m

deg(u)

Since deg(u) ≥ 1 then
∑

u∈V
2m

deg(u) ≤
∑

u∈V
2m
1 = 2mn. Also, since the graph is

d-degree-bounded 2m =
∑

u∈V deg(u) ≤ nd thus 2mn ≤ dn2.

4. Y is the average of s independent copies of f(x) and therefore, by linearity of
the expectation, we have that E[Y ] = E[f ] = n. Moreover, Since the nodes xi

are chosen independently we have that Var[Y ] = 1
s2

∑s
i=1 Var[f(xi)]. Since f(xi)

distribute identically and substituting Var(x) ≤ dn2 we get 1
s2

∑s
i=1 Var[f(xi)] ≤

s
s2 dn

2 = dn2/s.

5. Since E[Y ] = n we get that the above holds if

Pr[|Y − E[n]| > εn] <
Var[Y ]

ε2n2
≤ dn2/s

ε2n2
=

d

sε2

The condition that d
sε2 ≤ δ holds for s ≥ d

δε2
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3 Approximate median

setup

Given a list A of n numbers a1, . . . , an, we define the rank of an element r(ai) as the
number of elements which are smaller than it. For example, the smallest number has
rank zero and the largest has rank n − 1. Equal elements are ordered arbitrarily. The
median of A is an element a such that r(a) = n/2 (rounded either up or down). An
α-approximate-median is a number a such that:

n(1/2− α) ≤ r(a) ≤ n(1/2 + α)

In this question we sample k elements uniformly at random with replacement from the
list A. Let the samples be {x1, . . . , xk} = X . You will be asked to show that the median
of X is an α-approximate-median of A.

questions

1. What is the probability the a randomly chosen element x is such that:

r(x) > n(1/2 + α)

2. Let us define X>α as the set of samples whose rank is greater than n(1/2 + α).
More precisely, X>α = {xi ∈ X |r(xi) > n(1/2 + α)}. Similarly we define X<α =
{xi ∈ X |r(xi) < n(1/2−α)}. Prove that if |X>α| < k/2 and |X<α| < k/2 then the
median of X is an α-approximate-median of A.

3. Let Z = |X>α|. Find t for which:

Pr[Z ≥ k/2] = Pr[Z ≥ (1 + t)E[Z]]

4. Bound from above the probability that Z ≥ k/2 as tightly as possible. If you do so
using a probabilistic inequality, justify your choice.

5. Compute the minimal value for k which will guarantee that |X>α| < k/2 and

|X<α| < k/2 with probability at least 1− δ.
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answers

1. There are n(1/2 − α) elements for which r(x) > n(1/2 + α). Since the element is
chosen uniformly, the probability of that happening is (1/2− α).

2. First we note that the median of X cannot be either in X>α or in X<α. This is
simply because each of them includes less than half of the elements in X . Moreover,
by the definitions of X>α and X<α we have:

n(1/2− α) ≤ r(median(X)) and r(median(X)) ≤ n(1/2 + α)

which means that median(X) is an α-approximate-median of A.

3. Since the probability of a sample being in X>α is exactly 1/2−α and since we have
k independent samples, E[Z] = E[|X>α|] = k(1/2− α). Solving for t we get

(1 + t)E[Z] = k/2 → (1 + t)(1/2− α) = 1/2 → t =
2α

1− 2α

4. Since the value of Z is the sum of independent indicator variables we can apply
Chernoff’s inequality. Denoting µ = E[Z] = k(1/2− α) and t = 2α

1−2α we have:

Pr[Z ≥ k/2] = Pr[Z ≥ (1 + t)µ] ≤ e−µt2/4

5. Similarly to the the above we can argue that

Pr[|X<α| ≥ k/2] ≤ e−µt2/4

From the union bound we have that the probability of the event that |X<α| ≥ k/2
or that |X>α| ≥ k/2 is at most the sum of their probabilities.

Pr [|X<α| ≥ k/2 ∪ |X>α| ≥ k/2] ≤ Pr [|X<α| ≥ k/2] + Pr[|X>α| ≥ k/2] ≤ 2e−µt2/4

Demanding that this failure probability is less than δ we guarantee success with
probability at least 1−δ. Substituting µ = k(1/2−α) and t = 2α

1−2α this is achieved
for

2e−µt2/4 < δ → k >
4 log(2/δ)(1/2− α)

α2
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4 Soulmate search

setup

In this question you will be asked to derive a search algorithm for a unique nearest
neighbor given a local sensitive hash function family. We assume a universe of n objects
x1, . . . , xn and a distance function d. For any pair of points 0 ≤ d(xi, xj) ≤ 1. Moreover,
each point xi has exactly one soulmate point xj such that d(xi, xj) ≤ r, r is known
constant. For all other points in the universe d(xi, xj′) > 2r. You are given a family H of
hash functions such that Prh∼H [h(xi) = h(xj)] =

1
1+d(xi,xj)

for any pair (h ∼ H means

that h is chosen uniformly from H). We also define a bucketing hash function g which
accepts an element x and returns a list of hash values.

g(x) = [h1(x), . . . , hk(x)]

where each of the hush functions h1, . . . , hk was chosen uniformly and independently from
the family H . We say that xi and xj are in love if g(xi) = g(xj).

questions

1. What is the probability of two points, whose distance is d(xi, xj), falling in love?

2. Compute a value for k for which the probability that xi and xj who are not soulmates
(d(xi, xj) ≥ 2r) of falling in love is at most 1/n. Or, find k for which the following
holds:

Pr[g(xi) = g(xj) | d(xi, xj) ≥ 2r] ≤ 1/n

3. For this value of k, what is the probability that xi falls in love with her soulmate?
That means Pr[g(xi) = g(xj) | d(xi, xj) ≤ r]. Help: you can use the approximation
log(1+r)
log(1+2r) ≈ 1

2 .

4. We now create m independent copies of g, g1, . . . , gm. We say that xi finds xj if
gℓ(xi) = gℓ(xj) for at least one function gℓ. Give a bound on the value of m which
insures that all xi find their soulmates with probability at least 1− δ?

5. Given the above value for m, bound from above the expected number of points xj

that xi fell in love with which were not her soulmates.

8



answers

1. Since each of the hash functions was chosen independently, we have that for each
Pr[hℓ(xi) = hℓ(xj)] =

1
1+d(xi,xj)

. For xi and xj to be in love this must hold for all

k hash functions which happens with probability 1
(1+d(xi,xj))k

.

2. Using the expression from the previous question for two points for which d(xi, xj) ≥
2r we have:

1

(1 + d(xi, xj))k
≤ 1

(1 + 2r)k
≤ 1/n

k ≥ log(n)

log(1 + 2r)

3. Substituting d(xi, xj) ≤ r and k = log(n)
log(1+2r) we get:

Pr[g(xi) = g(xj)] =
1

(1 + d(xi, xj))k
≥ 1

(1 + r)k

= (1 + r)−
log(n)

log(1+2r) = n− log(1+r)
log(1+2r) ≈ n−1/2

which uses the approximation log(1+r)
log(1+2r) ≈ 1

2 .

4. For a point to fail in finding her soulmate, it must fail in falling in lovem consecutive
times. The probability of one point failing is therefore (1− n−1/2)m. By the union
bound, the probability of any of the n points failing is at most n(1 − n−1/2)m.
demanding that this is bounded by δ yields:

n(1− n−1/2)m ≈ ne−m/
√
n ≤ δ → m ≥

√
n log(n/δ)

5. We can denote by Zi,j,ℓ the event that point xi and xj are such that d(xi, xj) > 2r
and gℓ(xi) = gℓ(xj). The number of points that xi falls in love with is bounded
by

∑n
i=1 ∪kℓ=1Zi,j,ℓ. Using the linearity of expectation and the fact that Pr[Zi,j,ℓ =

1] ≤1/n we have that:

E[

n∑

i=1

∪mℓ=1Zi,j,ℓ] ≤ E[

n∑

i=1

m∑

ℓ=1

Zi,j,ℓ] =

n∑

i=1

m∑

ℓ=1

E[Zi,j,ℓ] ≤
n∑

i=1

m∑

ℓ=1

1/n = m
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