
General Info

1. Solve 3 out of 4 questions.

2. Each correct answer is worth 33.3 points.

3. If you have solved more than three questions, please indicate which three you would
like to be checked.

4. The exam’s duration is 3 hours. If you need more time please ask the attending
professor.

5. Good luck!

Useful facts

1. For any vector x ∈ R
d we define the p-norm of x as follows:

||x||p = [
d∑

i=1

(x(i))p]1/p

2. Markov’s inequality: For any non-negative random variable X :

Pr[X > t] ≤ E[X ]/t.

3. Chebyshev’s inequality: For any random variable X :

Pr[|X − E[X ]| > t] ≤ Var[X ]/t2.

4. Chernoff’s inequality: Let x1, . . . , xn be independent {0, 1} valued random vari-
ables. Each xi takes the value 1 with probability pi and 0 else. Let X =

∑n
i=1 xi

and let µ = E[X ] =
∑n

i=1 pi. Then:

Pr[X > (1 + ε)µ] ≤ e−µε2/4

Pr[X < (1− ε)µ] ≤ e−µε2/2

Or in a another convenient form:

Pr[|X − µ| > εµ] ≤ 2e−µε2/4

5. Hoeffding’s inequality: Let x1, . . . , xn be independent random variables taking
values in {+1,−1} each with probability 1/2, then:

Pr[|

n∑

i=1

xiai| > t] ≤ 2e
−

t
2

∑
n
i=1

a2

i .

6. For any x ≥ 2 we have:

e−1 ≥ (1−
1

x
)x ≥

2

3
e−1

7. For convenience:

3

5
≤ 1− e−1 ≈ 0.632 ≤

2

3
and

3

4
≤ 1−

2

3
e−1 ≈ 0.754 ≤

4

5
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1 Probabilistic inequalities

setup

In this question you will be asked to derive the three most used probabilistic inequalities
for a specific random variable. Let x1, . . . , xn be independent {−1, 1} valued random
variables. Each xi takes the value 1 with probability 1/2 and −1 else. Let X =

∑n
i=1 xi.

questions

1. Let the random variable Y be defined as Y = |X |. Prove that Markov’s inequality
holds for Y . Hint: note that Y takes integer values. Also, there is no need to
compute Pr[Y = i].

2. Prove Chebyshev’s inequality for the above random variableX . You can use the fact
that Markov’s inequality holds for any positive variable regardless of your success
(or lack of if) in the previous question. Hint: Var[X ] = E[(X − E[X ])2].

3. Argue that

Pr[X > a] = Pr[Πn
i=1e

λxi > eλa] ≤
E[Πn

i=1e
λxi ]

eλa

for any λ ∈ [0, 1]. Explain each transition.

4. Argue that:
E[Πn

i=1e
λxi ]

eλa
=

Πn
i=1E[eλxi ]

eλa
=

(E[eλx1 ])n

eλa

What properties of the random variables xi did you use in each transition?

5. Conclude that Pr[X > a] ≤ e−
a
2

2n by showing that:

∃ λ ∈ [0, 1] s.t.
(E[eλx1 ])n

eλa
≤ e−

a
2

2n

Hint: For the hyperbolic cosine function we have cosh(x) = 1
2 (e

x+ e−x) ≤ ex
2/2 for

x ∈ [0, 1].
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2 Approximating the size of a tree

setup

In this question we will try to approximate the number of leaves in a tree. A binary
tree is a graph consisting of internal nodes and n leaves. Each internal node, u, has two
children. A left child l(u) and a right child r(u). The only node which does not have a
parent is the root of the tree uroot. For each node we also denote by d(u) its depth in the
tree which is the distance from the root. For example d(urood) = 0 and d(r(uroot)) = 1.

We define a random walk on a tree as the process of starting at the root and then
randomly moving to one of the children until we hit a leaf. More precisely:

1. u← uroot

2. while u is an internal node

3. w.p. 1/2

4. u← l(u)

5. otherwise

6. u← r(u)

7. return u

questions

1. Let the leaf u be at depth d(u). Calculate the probability, p(u), that the random
walk outputs u?

2. Let x be the output leaf of a random walk and let f(x) = 2d(x) be a function defined
on the leaves. Compute the value of:

Ex∼w[f(x)]

where x ∼ w denotes that x is chosen according to the distribution on the leaves
generated by the random walk.

3. We say that a tree is c-balanced if d(u) ≤ log2 n+ c for all leaves in the tree. Show
that for a c-balanced tree

Varx∼w[f(x)] ≤ 2cn2

4. Let Y = 1
s

∑s
i=1 f(xi) where xi are output nodes of s independent random walks

on the tree. Compute E[Y ] and show that Var[Y ] ≤ 2cn2/s.

5. Use Chebyshev’s inequality to find a value for s such that for two constants ε ∈ [0, 1]
and δ ∈ [0, 1]:

Pr[|Y − n| > εn] < δ.

s should be a function of c, ε and δ.
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3 Multi-armed bandit

setup

In the following question we will devise an algorithm for finding the best slot machine
in the casino. This problem is named Multi-armed bandit since a single slot machine is
also known as a one-armed bandit.1 We are presented with m machines M1, . . . ,Mm.
The probability of wining at machine Mi is pi and we assume each game is independent
of all others. The best machine to play is, of course, the one maximizing the winning
probability. Our strategy is to first play each machine k times regardless of the outcomes.
Then, pick the machine which won the largest number of times.2

questions

1. Let wi denote the number of wins at machine Mi after having played k rounds.
Compute E[wi].

2. Without loss of generality, let the best machine be M1, i.e., ∀i p1 ≥ pi. We call a
machine Mi “good” if pi ≥ (1−α)p1 and “bad” if pi < (1−α)p1. Argue that if for
the best machine w1 ≥ E[w1]− αk/2 and for all bad machines wi < E[w1]− αk/2
then we will pick a “good” machine.

3. Bound from above the probability that for the best machine

w1 < E[w1]− αk/2

for any α ≤ p1.

4. Bound from above the probability that for a “bad” machine

wi ≥ E[w1]− αk/2.

Do not be confused: on the right hand side of the equation we have w1 and not wi.

5. Using the results of 3 and 4 give an upper bound on the value of k which will
guarantee that we pick a “good” machine with probability at least 1−δ. Remember
that you might have m− 1 bad machines.

1Slot machines are known as one-armed bandits because slot machines were originally operated by a
lever on the side of the machine (the one arm) and because of their ability to leave the gamer penniless.

2This problem comes up often in data mining scenarios in which we estimate probabilities of events
based on observations in the data.
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4 Weak random projections

setup

In this question we will construct a simple and weak version of random projections. That
is, given two vectors x, y ∈ R

d we will find two new vectors x′, y′ ∈ R
k such that from x′

and y′ we could approximate the value of ||x− y||. The idea is to define k vectors ri ∈ R
d

such that each ri(j) takes a value in {+1,−1} uniformly at random. Setting x′(i) = rTi x
and y′(i) = rTi y the questions will lead you through arguing that 1

k ||x
′− y′||22 ≈ ||x− y||22.

questions

1. Let z = x− y, and z′ = x′ − y′. Show that z′(ℓ) = rTℓ z for any index ℓ ∈ [1, . . . , k].

2. Show that E[ 1k ||z
′||22] = E[(z′(ℓ))2] = ||z||22.

3. Show that
Var[(z′(ℓ))2] ≤ 4||z||42.

Hint: for any vector w we have ||w||4 ≤ ||w||2.

4. From 3 (even if you did not manage to show it) claim that

Var[
1

k
||z′||22] ≤ 4||z||42/k.

5. Use 3 and Chebyshev’s inequality do obtain a value for k for which:

(1 − ε)||x− y||22 ≤
1

k
||x′ − y′||22 ≤ (1 + ε)||x− y||22

with probability at least 1− δ.
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