Sampling

Edo Liberty
Algorithms in Data mining

Sampling is an important concept and a great algorithmic tool if applied
correctly. Today, we go over only a basic use which is subset size estimation.
For example, say we have a large query log (a list of all queries made to a search
engine) and say we wanted to measure how many queries contain the word
“adele”. This is easy, we just count. However, we can also take roughly 10~°
fraction of the queries and count only them. Then, multiplying our resulting
count by 10% should give us a good approximate answer. We will also see that
we can ‘count’ many different subsets of queries on the same sample. We make
these claims accurate in here. For this we learn about:

e The Chernoff bound (which we will also prove)
e The union bound

e Reservoir sampling (and Fisher Yates shuffling)

1 Sampling

Problem: Given a large set of elements U, (|[U| = N) select a subset of el-
ements U (|U| ~ n) such that from U the size of any subset S C U can be
estimated.

Approach: Pick each element from U independently into our set U with prob-
ability p = n/N. Let the variable X; be 1 if element ¢ is picked and 0 else. The

number of picked elements is Zf\il X; and its expectation is

N N

E[ZXi]:Z i_v:

=1 =1

ZI:

Let S be the set of elements both in S and in U, Le., S =5nU. Equivalently,
let s; be 1 if item i is in S and zero else. Let Z = &|S| be our estimator of |S|:

N N 151 n
=1 Jj=1

The question is: how close is Z to |S|? For this we need the Chernoff bound.

E[Z] =

3| =

Lemma 1.1 (Chernoff bound). Let X, ..., X,, be independent Bernoulli trials
PrX;=1]=p;. Andlet X =" X; and p=E[X] =Y., p;.

Pr(X > (14 &)u] < e #/4 (1)

PrX < (1—e)u] < e=he’/2 (2)

We will prove this soon but let’s first use it to solve our problem.

In our case, we go over the elements of .S and count how many of them were
sampled into U. Since each element is taken independently with probability
p = n/N we have that p = E[X] = |S|n/N. Substituting into the Chernoff
bound we get:

Pr[X > (14¢)[S|n/N] < e |SIne?/aN (3)
Pr[X < (1—¢)|S|n/N] < e ISIne*/2N (4)

Or, using the union bound (below) and substituting Z = X N/n:
Pr[|Z — |S|| > ¢|S]|] < 2~ |SIn<"/4N

By demanding that e~SI"s*/4N < § (the failure probability be less than §) we

get:
4 N 2
> log(=
nZ 751 lo8(5)

For example, if |S| is the size of 107°N and we want to have a 10% accuracy
with probability at least 0.99, we must keep a sample of roughly 10® elements,
regardless of N. That might not sound like a small number but consider that
fact that this is less than the number of search queries to some search engines
in 1 hour (according to published reports).

2 The union bound

Lemma 2.1. For any set of m events Ay, ..., Ap:

PriUft, A;] < PrA;.

=1

In words, the probability that one or more events happen is at most the sum
of the individual event probabilities.

This simple notion is going to become very handy. Given the above setup,
assume we want to estimate size of m different subsets, Si,...,S,. Also, we
are not willing to compromise on the quality. This means that we demand:

Vi |Z° -S| <elS7|

Let f; be the event that we fail in estimating the size of S, i.e., ’Zi - |Sl|‘ >
el Sl

Pr{UL, fi] <) Prlfi] < mmax(Pr{fi))
i=1
Or, the probability of failure in at least one event out of m is at most m times
the maximal probability of failure. By demanding that m max(Pr[f;]) < § we
succeed in all events with probability at least 1 — .

max 215 /AN < 5 o> S og(S

i =9/ €2 min || &l 4])
Note that we only “pay” a logarithmic factor in m. Thus, sampling only a
slightly larger set guarantees us accuracy for a very large number of different

sets simultaneously.

3 Fisher Yates shuffling

Suppose you need to shuffle a very long stream of elements. How would you go
about doing that? The algorithm goes as follows: go over the elements one by
one. In step ¢ generate a random number j between 0 and ¢ and switch elements
a; and a; (if ¢ = j then a; remains in place). To prove this gives a truly uniform
shuffle of the vector, we prove that each element is placed in any location with
probability exactly 1/n. We prove this by recursion. Assume that after k steps
all the elements {a1,...,ax} are uniformly shuffled, i.e. Pr[a; is in position j] =
1/k for all 4, j < k. Now, advance one step in the algorithm. Element a; is in
position j < k only if it was there in the last step of the algorithm (w.p. 1/k)
and if it was not swapped with ayy1, w.p. k/(k+1). Multiplying the two gives
1/(k+1). The element occupying the last position and the position of ay41 are
trivial. This completes the proof by induction.

4 Reservoir Sampling

In reservoir sampling, we want to keep exactly n elements out of a stream of N
uniformly at random. The trivial thing to do is to shuffle the stream and take
the first n elements. This is clearly correct but can we do any better?

We can simulate the Fisher-Yates algorithm and discard any element which
is out of the range of [0,...,n — 1]. In other words, do the following: First,
take the first n elements in the stream. For element a; in the stream, generate
a random number r between 0 and 7. If r > n discard the element. If r < n,
discard element r from your collection and insert element a;. Question for
thought, how come we can simply discard elements? Can we be sure Fisher
Yates will never be cycled them back into the sample?

