
Frequent Items in Streams

Edo Liberty

Algorithms in Data mining

1 Approximated histograms

In this section we will describe a simple modification of the algorithm de-
scribed in [?]. Say we are given a stream of elements X = [x1, . . . , xN] where
xi ∈ {a1, . . . , an}. Let ni denote the number of times element ai appeared in
the stream, i.e., ni = |{j|xj = ai}|. Our goal is to estimate ni for all frequent
elements. This can be solved exactly by keeping a counter for each element
{a1, . . . , an}. Alas, this might require, Θ(n) memory. Another approach is to
sample a large enough fraction of the stream and compute count the frequen-
cies in the sample (see homework question). Here we suggest a deterministic
algorithm.

Algorithm 1 Frequent items counter

input: ε, θ ∈ (0, 1], X = [x1, . . . , xN]
C ← {}
for x ∈ X do

if x ∈ C then

C[x] + +
else if size(C) < 1/εθ then

C[x] = 1
else

for a ∈ C do

C[a]−−
if C[a] == 0 then

del(C[a])
end if

end for

end if

end for

for a ∈ C do

if C[a] ≤ Nθ(1− ε) then
del(C[a])

end if

end for

1

Claim 1.1 For elements ai for which ni ≤ Nθ(1− ε) we have ni 6∈ C.

This is easy to see since we add 1 to the counter of C[a] every time we encounter
a. So, clearly C[ai] ≤ ni ≤ Nθ(1−ε). Therefore, in the last loop of the algorithm
it will be deleted.

Claim 1.2 For elements ai for which ni ≥ Nθ we have ni ≥ C[ai] ≥ ni(1− ε).

This is slightly less obvious. Notice that every time we decrease the counters in
the map C we have that size(C) ≥ 1/εθ. That means that we decrement at least
1/εθ different counters simultaneously. If we let t denote the the number of times
this step is performed, we have t/εθ ≤ N because we could not have deleted
more items than the entire stream. Using the observation that C[ai] ≥ ni − t
we have C[ai] ≥ ni −Nεθ ≥ ni(1− ε).

Remarks: note that this algorithm uses O(1) memory (assuming ε and θ are
constants).

Count Sketches

Here we learn about a structure names CountSketch which was suggested in
[?]. It will allow us to estimate the frequency of the k most frequent items in
a stream even if it is less than a constant fraction of the stream. There will,
however, be other limitations.

We denote the elements by o1, . . . , om having each appeared n1 ≥ . . . ≥ nm

(the names of the elements are ordered according to their frequency). Before
describing the CountSketch structure, let us first analyze one of its building
blocks. For lack of a more creative name, we will call it B. B is an array of
length b which is associated with two hash functions: h : o → [1, . . . , b] and
s : o→ [−1, 1].

We define two function for B one for adding elements into it.

1. define Add(o):

2. B[h(o)] = B[h(o)] + s(o).

and one for returning an estimate for ni given oi

1. define Query(o):

2. return B[h(o)]s(o).

In order to compute the expectation of B[h(o)]s(o) we need to define the
“inverse” of h. Let h−1(oi) = {oj |h(oj) = h(oi)}. In words, h−1(oi) is the set of
all elements for h(oi) = h(oj). Since each element in oj ∈ h−1(oi) is encountered

2

exactly nj times and for each of those s(oj) is added to B[h(o)] we have that
B[h(oi)] =

∑

oj∈h−1(oi)
njs(oj). Let us compute the expected result of a query.

E[B[h(oi)]s(oi)] = E[
∑

oj∈h−1(oi)

njs(oj)s(oi)]

= ni + E[
∑

oj∈h−1(oi),oi 6=oj

njs(oj)s(oi)] = ni

As a reminder, we are interested in the frequencies n1, . . . , nk, for the top
k most items. We see that if b > 8k we have that |h−1(oi) ∩ {o1, . . . , ok}| = 0
with probability at least 7/8. In other words, the element oi does not map
under h to the same cell in B with any of the top k frequency items. We will
define h−1

>k = h−1(oi)∩ {ok+1, . . . , om}. We will assume from this point on that

h−1(oi) ⊂ {ok+1, . . . , om} or in other words that h−1
>k = h−1(oi).

Now, let us bound the variance of B[h(oi)]s(oi).

V ar(B[h(oi)]s(oi)) ≤ E[B[h(oi)]
2s(oi)

2]

= E[(
∑

oj∈h−1

>k
(oi)

njs(oj))(
∑

oj′∈h−1

>k
(oi)

nj′s(oj′))]

= Eh

∑

oj∈h
−1

>k
(oi)

∑

oj′∈h
−1

>k
(oi)

Es[njnj′s(oj)s(oj′)]

= Eh

∑

oj∈h
−1

>k
(oi)

n2
j

=

m
∑

j=k+1

n2
j/b

Note that we have both an expectation over the choice of the hash function s
and over the hash function h.

Using this bound on the variance of B[h(oi)]s(oi) and Chebyshev’s inequality
we attain that:

Pr

|B[h(oi)]s(oi)− ni| >

√

√

√

√8

m
∑

j=k+1

n2
j/b

 ≤ 1/8

However, note that we also demanded that none of the top k elements map
to the same cell as oi which only happened with probability 7/8. Using the
union bound on these two events we get:

Pr [|n̂i − ni| ≤ γ] ≥ 3/4

where we denote n̂i = B[h(oi)]s(oi) and γ =
√

8
∑m

j=k+1 n
2
j/b.

Note that this happens for every elements individually only with constant
probability. We would like to get that this holds with probability 1 − δ for all

3

elements simultaneously. We do that by repeating this entire structure t times
creating the CountSketch B1, . . . , Bt. When inserting an element we insert it
into all t arrays Bi and above. When querying the CountSketch we return
query(oi) = Median(n̂1

i , . . . , n̂
t
i) where n̂ℓ

i is the estimator n̂i from Bℓ.
Because Pr [|n̂i − ni| ≤ γ] ≥ 3/4 we get from Chernoff’s inequality that at

least half the values n̂ℓ
i will be such that

∣

∣n̂ℓ
i − ni

∣

∣ ≤ γ (including the median)
for all m elements with probability at least 1− δ for t ∈ O(log(m/δ)).

The only thing left to do is set the correct value for b (the length of B). We
will demand that γ ≤ ǫnk. This gives b ≥ 8

∑m

i=k+1 n
2
i /ε

2n2
k. Therefore, for

t = O(log(m/δ)) and b ≥ 8max(k,
∑

m
i=k+1

n2
i

ε2n2
k

) with probability at least 1− δ for

each element in the stream |n̂i − ni| ≤ εnk.
The algorithm for finding the most frequent items is therefore to go over

the stream and keep a CountSketch of all the elements seen this far. When we
process an element, we also estimate it’s frequency n̂ an keep the top k most
frequent items in estimated frequencies. These are guaranteed to to contain all
elements oi for which ni > (1 + 2ε)nk and not to contain any element oi for
which ni < (1 − 2ε)nk.

4

