Frequent Items in Streams

Edo Liberty
Algorithms in Data mining

1 Approximated histograms

In this section we will describe a simple modification of the algorithm de-
scribed in [?]. Say we are given a stream of elements X = [z1,...,2x] where
x; € {a1,...,a,}. Let n; denote the number of times element a; appeared in
the stream, i.e., n, = |{jlz; = a;}|. Our goal is to estimate n, for all frequent
elements. This can be solved exactly by keeping a counter for each element
{a1,...,a,}. Alas, this might require, ©(n) memory. Another approach is to
sample a large enough fraction of the stream and compute count the frequen-
cies in the sample (see homework question). Here we suggest a deterministic
algorithm.

Algorithm 1 Frequent items counter
input: ¢,0 € (0,1], X = [z1,...,TN]
C«{}
for r € X do

if z € C then
Clx] ++
else if size(C) < 1/ef then
Clz]=1
else
for a € C do
Cla] — —
if Cla] == 0 then
del(Cla])
end if
end for
end if
end for
for a € C do
if Cla] < NO(1 —¢) then
del(Cla])
end if
end for

Claim 1.1 For elements a; for which n; < NO(1 — ¢) we have n; & C.

This is easy to see since we add 1 to the counter of C[a] every time we encounter
a. So, clearly Cla;] < n; < NO(1—¢). Therefore, in the last loop of the algorithm
it will be deleted.

Claim 1.2 For elements a; for which n; > N6 we have n; > Cla;] > n;(1 —¢).

This is slightly less obvious. Notice that every time we decrease the counters in
the map C we have that size(C) > 1/e6. That means that we decrement at least
1/e0 different counters simultaneously. If we let ¢ denote the the number of times
this step is performed, we have t/e6 < N because we could not have deleted
more items than the entire stream. Using the observation that Cla;] > n; —t
we have Cla;] > n; — Nef > n;(1 —¢).

Remarks: note that this algorithm uses O(1) memory (assuming ¢ and 0 are
constants).

Count Sketches

Here we learn about a structure names CountSketch which was suggested in
[?]. Tt will allow us to estimate the frequency of the k most frequent items in
a stream even if it is less than a constant fraction of the stream. There will,
however, be other limitations.

We denote the elements by o1, ..., 0, having each appeared n1 > ... > n,,
(the names of the elements are ordered according to their frequency). Before
describing the CountSketch structure, let us first analyze one of its building
blocks. For lack of a more creative name, we will call it B. B is an array of
length b which is associated with two hash functions: h : 0 — [1,...,b] and
s:o0—[-1,1].

We define two function for B one for adding elements into it.

1. define Add(o):
2. B[h(0)] = Blh(0)] + s(0).
and one for returning an estimate for n; given o;
1. define Query(o):
2. return Blh(o)]s(0).

In order to compute the expectation of B[h(o)]s(0) we need to define the
“inverse” of h. Let h='(0;) = {0j|h(0;) = h(0;)}. In words, h™!(0;) is the set of
all elements for h(o;) = h(o;). Since each element in 0; € h™'(0;) is encountered

exactly n; times and for each of those s(o;) is added to B[h(0)] we have that
B[h(o0;)] = onehfl(ol-) n;s(0j). Let us compute the expected result of a query.

E[B[h(o)]s(0:)] = E[> nys(o;)s(or)]
0;€R~1(0;)

= n; +E[Z n;js(oj)s(0;)] = n;

0;€R~=1(0;),0:7#0;

As a reminder, we are interested in the frequencies nq,...,ng, for the top
k most items. We see that if b > 8k we have that |h=1(0;) N {o01,...,06} =0
with probability at least 7/8. In other words, the element o; does not map
under h to the same cell in B with any of the top k frequency items. We will
define h;,lC =h7(0;) N {0k+1,---,0m}. We will assume from this point on that
h=Y(0;) C {Ok+1,...,0m} or in other words that hZ, = h™1(0;).

Now, let us bound the variance of B[h(0;)]s(0;).

Var(Blh(o)]s(0:)) < E[B[h(0)]?s(0:)?]
= E[(Z n;js(oj))(Z n;js(0jr))]
0;€hZ L (0:) 01 €hZ; (01)

= En Y > Eilngngs(og)s(op)]
Oth;i(oi)oj/Eh;i(oi)

B Y 3
o]'Gh;i(oi)

> /b

j=k+1

Note that we have both an expectation over the choice of the hash function s
and over the hash function h.

Using this bound on the variance of B[h(0;)]s(0;) and Chebyshev’s inequality
we attain that:

8 Y m2/b| <1/8

j=k+1

Pr ||Blh(0:)]s(0;) — ns| >

However, note that we also demanded that none of the top k elements map
to the same cell as o; which only happened with probability 7/8. Using the
union bound on these two events we get:

Pr(|f; —ni| <~] = 3/4
where we denote 7; = B[h(0;)]s(0;) and v = /837", | n7/b.

Note that this happens for every elements individually only with constant
probability. We would like to get that this holds with probability 1 — § for all

elements simultaneously. We do that by repeating this entire structure t times

creating the CountSketch Bi,..., B;. When inserting an element we insert it
into all ¢ arrays B; and above. When querying the CountSketch we return
query(o;) = Median(n}, ..., nt) where 2f is the estimator 7; from B.

Because Pr[|n; —n;| <] > 3/4 we get from Chernofl’s inequality that at
least half the values 7¢ will be such that }ﬁf — ni’ < v (including the median)
for all m elements with probability at least 1 — § for ¢ € O(log(m/9)).

The only thing left to do is set the correct value for b (the length of B). We
will demand that v < eny. This gives b > 83", n?/e?n;. Therefore, for

m 2
t = O(log(m/é)) and b > 8 max(k, 21:2’67%1%) with probability at least 1 — § for
each element in the stream |n; — n;| < eng.

The algorithm for finding the most frequent items is therefore to go over
the stream and keep a CountSketch of all the elements seen this far. When we
process an element, we also estimate it’s frequency n an keep the top k& most
frequent items in estimated frequencies. These are guaranteed to to contain all

elements o; for which n; > (1 + 2¢)n; and not to contain any element o; for
which n; < (1 — 2¢)ng.

