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Frequency Moments

Assume we have a stream A, of length N which is composed of m different types
of items a1, . . . , am each of which repeats itself n1, . . . , nm times (in arbitrary
order) We define the frequency moments fk as:

fk =

m∑
i=1

nk
i

Our aim is to process the stream one element at a time and attain an (ǫ, δ)-
approximation. That is, a multiplicative factor (1± ǫ) with probability at least
1 − δ. Note that f0 is the number of distinct elements in the stream m and
that f1 is the number of elements N . f2 is also an important quantity which
represents how “skewed” the distribution of the elements in stream is.

Estimating f0

Here we describe an algorithm for estimating f0 which merges (and hopefully
simplifies) ideas from [1] and [2]. First, assume a hash function h : a → [0, 1]
uniformly. Let us define a random variable X = minih(ai). Intuitively, X
should be roughly 1/m and therefore 1/X should be a fair estimate of m. This
is almost true. In what comes next we make this into an exact statement.

Let us first compute the expectation of X . The distribution function fX of
the random variable X is fX(x) = m(1 − x)m−1. This is because, we have m
different choices for the minimal element and for every value it takes, x, all the
rest m− 1 values need to be higher than it (w.p (1− x)m−1). Therefore:

E[X ] =

∫ 1

0

xm(1 − x)m−1dx

=

∫ 1

0

(1 − y)mym−1dy

=

∫ 1

0

mym−1dy −

∫ 1

0

mymdy

= 1−
m

m+ 1
=

1

m+ 1

1



This is after the substitution y = 1 − x. We now compute the variance of X .
For that we first compute E[X2].

E[X2] =

∫ 1

0

x2m(1− x)m−1dx

=

∫ 1

0

(1− y)2mym−1dy

=

∫ 1

0

mym−1dy −

∫ 1

0

2mymdy +

∫ 1

0

mym+1dy

= 1−
2m

m+ 1
+

m

m+ 2
≤

2

(m+ 1)2

Thus, the standard deviation of σ(X) is in the same order of magnitude as its
expectation E[X ]. To reduce this ratio we again define Y = 1

s

∑s
i=1 Xi for

which E[Y ] = 1
m+1 . and V ar[Y ] ≤ 2

s(m+1)2 .

Using Chebyshev’s inequality we get that

Pr[|Y −
1

m+ 1
| ≥

ε/2

m+ 1
] ≤

8

ε2s
≤ δ

if s ≥ 8
ε2δ . Therefore, multiplying this procedure 8

ε2δ different hash function and
taking their mean minimal value guaranties that with probability at least 1− δ
we have 1

m+1 (1 − ε/2) ≤ Y ≤ 1
m+1 (1 + ε/2). In other words: (m + 1) 1

1+ε/2 ≤
1
Y ≤ (m + 1) 1

1−ε/2 . But, since 1
1−ε/2 ≤ 1 + ε and 1 − ε ≤ 1

1+ε/2 we get the

desired results that (m+ 1)(1− ε) ≤ 1
Y ≤ (m+ 1)(1 + ε)

Estimating f1

This is basically counting the N elements in the stream. A trivial solution
therefore requires O(log(n)) bits of memory. It is also possible to store an
approximate counter in the space O(log log(n)) (see [3]) but we will not discuss
this here.

Estimating all Frequency Moments k > 0

We follow the derivation in [1]. For now, assume we know N in advance. This
is not necessary and we will fix it later. Let us first define a random variable X .
We choose an index q ∈ [1, . . . , N ] uniformly at random. Let a be the element in
place q in the stream, i.e. a = Aq. Define by r the number of times a appears in
the stream after location q, including. In other words r = |{i|Ai = a , i ≥ q}|.
We define X :

X = N(rk − (r − 1)k)

We claim that E[X ] = fk. Let us define the variable ei,j which indicates the
event that the index q is such that Aq = ai and ai appears exactly j times after
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the location q. Note that the events ei,j are disjoint and that if ei,j happens
than r takes the value j. Therefore, X =

∑
i,j ei,jN(jk − (j − 1)k). Moreover,

Pr[ei,j ] =
ni

N
1
ni

= 1
N since the probability of choosing ai is

ni

N and given that
this happens the probability of each index (out of the locations of ai) is equal
to 1

ni
.

E[X ] =
∑
i,j

E[ei,jN(jk − (j − 1)k)]

=

m∑
i=1

ni∑
j=1

Pr[ei,j ]N(jk − (j − 1)k)

=

m∑
i=1

ni∑
j=1

(jk − (j − 1)k)

=
m∑
i=1

nk
i = fk .

It is somewhat complicated and tedious to compute the variance of X . Citing
from [1] we have that:

V ar[X ] ≤ km1−1/kf2
k .

We define Y as the mean of s different copies of X , Y = 1
s

∑s
i=1 Xi. Clearly,

E[Y ] = E[X ] = fk and V ar[Y ] ≤ V ar[X ]/s = km1−1/kf2
k/s. Using Cheby-

shev’s inequality we have that

Pr[|Y − fk| > εfk] ≤
V ar[Y ]

ε2f2
k

≤
km1−1/k

ε2s

Demanding that s ≥ km1−1/k

ε2δ gives that Pr[|Y − fk| > εfk] ≤ δ which concludes
the construction.

Estimating f2

We will give here a better estimator of f2. Assume a hash function h : a →
{−1, 1} with probability 1/2 each. Define Z =

∑N
i=1 h(Ai) =

∑m
i=1 nih(ai).

Consider the variable X = Z2. As usual, we will begin with computing the
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expectation and variance of X .

E[X ] = E[Z2] = E[

m∑
i=1

nih(ai)
2]

= E[(

m∑
i=1

nih(ai))(

m∑
i′=1

ni′h(ai′))]

=

m∑
i=1

m∑
i′=1

nini′E[h(ai)h(ai′ )]

=

m∑
i=1

n2
i = f2

Similarly,

E[X2] = E[Z4] =

m∑
i=1

n4
i + 6

∑
1≤i<i′≤m

n2
in

2
i′

V ar[X ] = E[X2]− E2[X ] ≤ 4
∑

1≤i<i′≤m

n2
in

2
i′ ≤ 2f2

Finally, defining Y = 1
s

∑s
i=1 Xi, where each Xi is an independent copy of X

we have that:
Pr[|Y − f2| ≥ εf2] ≤ δ

if s ≥ 2
ε2δ .

Connection to random projections (next class)

Consider the s hash functions hi : a → {−1, 1} we used in estimating the
second frequency moment. Consider the matrix H ∈ R

s×m such that H(i, j) =
hi(j). Also, consider representing each input element ai by ~ai, the i’th standard
basis vector in R

m (the vector whose i’th entry is equal to 1 and the rest are

zero). Analogously, ~Ai is the vector representing the i’th element in the stream.

Remember that our estimate Y of f2 was
1
s

∑s
i=1 Z

2
i = || 1√

s
~Z||2. Moreover, from

the definition of ~Z, H , and ~Ai we have that ~Z =
∑N

i=1 H
~Ai = H

∑N
i=1

~Ai = H ~A.

Here, ~A =
∑N

i=1
~Ai = [n1, n2, . . . , nm]. Note however, that f2 = || ~A||2 by

definition of the second frequency moment. We get that for any stream and
any element frequencies || 1√

s
H ~A||2 ≈(ε,δ) || ~A||2. In other words, multiplying

the vector ~A by the matrix 1√
s
H is very likely to preserve its ℓ2 norm. We will

see that this phenomenon is in fact more overreaching and has some serious
consequences on point ensembles in high dimensional euclidian spaces.
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