
Random Projections

Edo Liberty

Algorithms in Data mining

We will give a simple proof of the following, rather amazing, fact. Every set
of n points in a Euclidian space (say in dimension d) can be embedded into the
Euclidian space of dimension k = O(log(n)/ε2) such that all pairwise distances
are preserved up distortion 1± ε. We will follow ideas from [1] and [2] and later
improve on running time using methods introduced in [3].

Random projection

We will argue that a certain distribution over the choice of a matrix R ∈ R
k×d

gives that:

∀x ∈ R
d Pr

[∣

∣

∣

∣

|| 1√
k
Rx|| − ||x||

∣

∣

∣

∣

> ε||x||
]

≤ 1

n2
(1)

Before we pick this distribution and show that Equation 1 holds for it, let us
first see that this gives the opening statement.

Consider a set of n points x1, . . . , xn in Euclidian space R
d. Embedding

these points into a lower dimension while preserving all distances between them
up to distortion 1 ± ε means approximately preserving the norms of all

(

n
2

)

vectors xi − xj . Assuming Equation 1 holds and using the union bound, this
property will fail to hold for at least one xi − xj pair with probability at most
(

n
2

)

1
n2 ≤ 1/2. Which means that all

(

n
2

)

point distances are preserved up to
distortion ε with probability at least 1/2.

1 i.i.d. gaussian distribution

We consider the distribution of matrices R such that each R(i, j) is drawn inde-
pendently from a normal distribution with mean zero and variance 1, R(i, j) ∼
N (0, 1). We show that for this distribution Equation 1 holds for some k ∈
O(log(n)/ε2).

First consider the random variable z =
∑d

i=1 r(i)x(i) where r(i) ∼ N (0, 1).
To understand how the variable z distributes we recall the two-stability of the
normal distribution. Namely, if z3 = z2 + z1 and z1 ∼ N (µ1, σ1) and z2 ∼
N (µ2, σ2) then,

z3 ∼ N (µ1 + µ2,
√

σ2
1 + σ2

2).

1

In our case, r(i)x(i) ∼ N (0, xi) and therefore, z =
∑d

i=1 r(i)x(i) ∼ N (0,
√

∑d
i=1 x

2
i) ∼

N (0, ||x||) ∼ ||x||y where yi ∼ N (0, 1). Now, note that each element in the vec-
tor Rx distributes exactly like z. Defining k identical copies of z, z1, . . . , zk, We
get that || 1√

k
Rx|| distributes exactly like:

|| 1√
k
Rx|| ∼

√

√

√

√

1

k

k
∑

i=1

z2i ∼ ||x||

√

√

√

√

1

k

k
∑

i=1

y2i

Thus, proving Equation 1 reduces to showing that:

Pr





∣

∣

∣

∣

∣

∣

√

√

√

√

1

k

k
∑

i=1

y2i − 1

∣

∣

∣

∣

∣

∣

> ε



 ≤ 1

n2
(2)

The sum of k squared normal variables is a very known distribution called
chi-square with k degrees of freedom, denoted by χ2

k. It is exactly defined by

χ2
k =

∑k
i=1 y

2
i where yi ∼ N (0, 1). Since χ2

k is a sum of independent ran-
dom variables, due to the central limit theorem, χ2

k converges to a normally
distributed quantity as k grows. We will use here a slightly different property
√

χ2
k ∼k→∞ N (

√
k, 1/

√
2). Somewhat sloppily, we will assume that k is large

enough so that it is harmless to substitute:

√

χ2
k ∼ N (

√
k, 1/

√
2)

I that case we have
√

1
k

∑k
i=1 y

2
i − 1 ∼ N (0, 1√

2k
). Thus, we only need to show

that for a random variable Z ∼
√
2k

[

√

1
k

∑k
i=1 y

2
i − 1

]

∼ N (0, 1) it holds that

Pr
[

|Z| > ε
√
2k

]

≤ 1

n2
(3)

We now use a simple bound on the error function

Pr[Z > t] =

∫ ∞

t

1√
2π

e−z2/2dz <

∫ ∞

t

1√
2π

z

t
e−z2/2dz =

1√
2π

e−t2/2

Setting t = ε
√
2k and noting that Pr[Z > t] = Pr[Z < −t] we demand that

1√
2π

e−ε2k ≤ 1
2n2 . This yields the bound k ≥ 2 log(n)+O(1)

ε2 which completes the

proof.

2 Sparse Random Projections

The goal of this section is The matrix R will contain a non zero only w.p. q.
That is, R(i, j) = N(0, 1/

√
q) with probability q and zero else. Again, we define

2

yi =
∑

j R(i, j)xj =
∑

j bi,jgi,jxj where bi,j = 1 w.p. q and gi,j ∼ N (0, 1/
√
q).

For simplicity and w.o.l.g. we set ‖x‖2 = 1.
First notice that E[y2i] = 1. Also, given the values of bi,j we have that yi is

Gaussian. More accurately, σ2
i =

∑

j bi,jx
2
j/q

First, let us see that this is sufficient in some sense

Pr[
1

k

∑

i

y2i ≥ (1 + ε)] = Pr[eλ
∑

i
y2
i ≥ eλk(1+ε)] (4)

≤ e−λk(1+ε)ΠiE[e
λy2

i] (5)

Given σi we have that yi is Gaussian and so we can compute E[ey
2
i] exaclty.

E[eλy
2
i] =

1
√

2πσ2
i

∫ ∞

∞
e
− y2

i

2σ2
i eλy

2
i dy (6)

=
1

√

2πσ2
i

∫ ∞

∞
e
−(1

σ2
i

−2λ)
y2
i
2 dy (7)

=
1

√

1− 2λσ2
i

(8)

Note that we must enforce now that 2λσ2
i < 1. Plugging this back into our

formula we get

Pr ≤ e−λk(1+ε)Πi
1

√

1− 2λσ2
i

(9)

= e
−λk(1+ε)+ 1

2

∑
i
log(1

1−2λσ2
i

)
(10)

We now use the Tailor expansion by log(1
1−x) ≥ x+ x2

Pr ≤ e−λk(1+ε)+ 1
2

∑
i
2λσ2

i +4λ2σ4
i (11)

≤ eλ(
∑

i
σ2
i −k)−λkε+

∑
i
2λ2σ4

i (12)

(13)

Now, assume that σ2
i ≤ 1 + ε/2 (we will fix this soon) then

Pr ≤ e−λkε/2+2λ2 ∑
i σ

4
i (14)

≤ e
− 1

32
k2ε2
∑

i σ4
i ≤ e−ckε2 (15)

for some constant c. As before, invoking the union bound completes the proof
for some k ∈ O(log(n)/ε2).

Alas, we are left to show that σ2
i ≤ 1 + ε/2. This is where the bounds on q

come in. We will see that this is not true for every vector x and every value of
q. Never the less, we’ll be able to fix this and still gain on running time. Let
us recap , σ2

i =
∑

j bi,jx
2
j/q where bi,j = 1 w.p. q and zero otherwise. Take

3

for example x = [1, 0, . . . , 0]. In this case σ2
i = bi,1/q which is potentially 1/q

which is significantly more that 1+ ε/2. On the other hand, consider the vector
x = [1√

d
, . . . , 1√

d
]. In this case σ2

i = 1
d

∑

j bi,j/q whose expectation is 1 and

which we expect from Chernoff’s inequality to be less that 1 + ε/2 w.h.p.
Let us restrict our selves to vectors such that ‖x‖∞ ≤ η. I claim that the

“worst” vectors we can have of this form contain 1/η2 entries of value η and the
rest zeros. This is a result of the convexity of the moment generating functions
of σ2

i with respect to x and the fact that the set of possible values for ‖x‖∞ ≤ η
lies in a polytop. Hence, the maximal value is attained in an extreme point as

above. Computing for this vector we have σ2
i =

∑1/η2

j=1 bi,jη
2/q. Bounding σ2

i

by 1 + ε we get

Pr[σ2
i ≥ 1 + ε] = Pr[

1/η2

∑

j=1

bi,j −
q

η2
≥ qε

η2
] (16)

≤ e
− qε2

2η2 ≤ 1

cnd
(fail w.p. at most 1/5) (17)

for q ≥ 3 log(n)η2

ε2
(18)

Thus, if our vectors are “spread” such that ‖x‖∞ ≤ η < ε√
3 log(n)

we can save

one computation and storage by being able to set q < 1.

3 Fast Vector Spreading

The question is, can we actively make sure that ‖x‖∞ is low. The answer is
yes and a method for doing that was suggested in [3]. For this we will need
to learn what Hadamard matrices are. Hadamard matrices are commonly used
in coding theory and are conceptually close for Fourier matrices. We assume
for convenience that d is a power of 2. The Walsh Hadamard transform of a
vector x ∈ R

d is the result of the matrix-vector multiplication Hx where H is a
d× d matrix whose entries are H(i, j) = 1√

d
(−1)〈i,j〉. Here 〈i, j〉 means the dot

product over F2 of the bit representation of i and j as binary vectors of length
log(d). Another way to view this is to define Hadamard Matrices recursively.

H1 =
1√
2

(

1 1
1 −1

)

, Hd =
1√
2

(

Hd/2 Hd/2

Hd/2 −Hd/2

)

Here are a few interesting (and easy to show) facts about Hadamard matrices.

1. Hd is a unitary matrix ‖Hx‖ = ‖x‖ for any vector x ∈ R
d.

2. Computing x 7→ Hx requires O(d log(d)) operations.

We also define a diagonal matrix D to be such that D(i, i) ∈ {1,−1}
uniformly. Clearly, we have that ‖HDx‖2 = ‖x‖2 since both H and D are

4

isotropies. Let us now bound ‖HDx‖∞. (HDx)(1) =
∑d

i=1 H(1, i)D(i, i)xi =
∑d

i=1
xi√
d
si where si ∈ {−1, 1} uniformly. To bound this we recap Hoeffding’s

inequality.

Fact 3.1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random vari-
ables s.t. Xi ∈ [ai, bi]. Let X =

∑n
i=1 Xi.

Pr[|X − E[X]| ≥ t] ≤ 2e
− 2t2∑n

i=1
(bi−ai)

2
(19)

Invoking Hoeffding’s inequality and then the union bound we get that if

‖HDx‖∞ ≤
√

c log(n)
d for all points x. Remark, for this we assumed log(d) =

O(log(n)) otherwise we should have had log(nd) in the bound. The situation,
however, that the dimension is super polynomial in the number of points is
unlikely. Usually it is common to have n > d.

4 Fast Random Projecton

Combining fast spreading with sparse projections we get the result in [3]. Ran-
domly project vectors by x 7→ 1√

k
RHDx. Computing HDx requires O(d log(d))

operations and guaranties that ‖HDx‖∞ ≤ η =
√

c log(n)
d . Setting this into the

bound on q ≥ 3 log(n)η2

ε2 we get that is is sufficient to have q ≥ c log2(n)
dε2 . The

expected number of non zeros in R is qkd. Therefore, the expected running time
required to compute x′ 7→ Rx′ is bounded from above by O(ck log2(n)/ε2) =
O(ε2k3). Putting this together we get a total running time of O(d log(d)+ε2k3)
instead of the straight forward O(kd).

References

[1] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into
a Hilbert space. Contemporary Mathematics, 26:189–206, 1984.

[2] S. DasGupta and A. Gupta. An elementary proof of the Johnson-
Lindenstrauss lemma. Technical Report, UC Berkeley, 99-006, 1999.

[3] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the
fast Johnson-Lindenstrauss transform. In Proceedings of the 38st Annual
Symposium on the Theory of Compututing (STOC), pages 557–563, Seattle,
WA, 2006.

5

