Assignment 2

Edo Liberty Algorithms in Data mining

1 Weak random projections

setup

In this question we will construct a simple and weak version of random projections. That is, given two vectors $x, y \in \mathbb{R}^d$ we will find two new vectors $x', y' \in \mathbb{R}^k$ such that from x' and y' we could approximate the value of ||x - y||. The idea is to define k vectors $r_i \in \mathbb{R}^d$ such that each $r_i(j)$ takes a value in $\{+1, -1\}$ uniformly at random. Setting $x'(i) = r_i^T x$ and $y'(i) = r_i^T y$ the questions will lead you through arguing that $\frac{1}{k}||x' - y'||_2^2 \approx ||x - y||_2^2$.

questions

- 1. Let z = x y, and z' = x' y'. Show that $z'(\ell) = r_{\ell}^T z$ for any index $\ell \in [1, \ldots, k]$.
- 2. Show that $E[\frac{1}{k}||z'||_2^2] = E[(z'(\ell))^2] = ||z||_2^2$.
- 3. Show that

$$\operatorname{Var}[(z'(\ell))^2] \le 4||z||_2^4.$$

Hint: for any vector w we have $||w||_4 \leq ||w||_2$.

4. From 3 (even if you did not manage to show it) claim that

$$\operatorname{Var}\left[\frac{1}{k}||z'||_{2}^{2}\right] \le 4||z||_{2}^{4}/k.$$

5. Use 3 and Chebyshev's inequality do obtain a value for k for which:

$$(1-\varepsilon)||x-y||_{2}^{2} \leq \frac{1}{k}||x'-y'||_{2}^{2} \leq (1+\varepsilon)||x-y||_{2}^{2}$$

with probability at least $1 - \delta$.

2 Answers

1. This is a consequence of the linearity of the operator.

$$z'(\ell) = x'(\ell) - y'(\ell) = r_{\ell}^{T}x - r_{\ell}^{T}y = r_{\ell}^{T}(x - y) = r_{\ell}^{T}z$$

2. Since $||z'||_2^2 = \sum_{i=1}^k z'(i)^2$ and since z'(i) are identically distributed we have that $\mathbb{E}[\frac{1}{k}||z'||_2^2] = \mathbb{E}[\frac{1}{k}\sum_{i=1}^k z'(i)^2] = \mathbb{E}[(z'(\ell))^2]$. Now we compute $\mathbb{E}[(z'(\ell))^2]$.

$$\mathbb{E}[(z'(\ell))^2] = \mathbb{E}[(\sum_{i=1}^d r_\ell(i)z(i))(\sum_{j=1}^d r_\ell(j)z(j))]$$
(1)

$$= \mathbb{E}\left[\sum_{i=1}^{d} \sum_{j=1}^{d} r_{\ell}(i) r_{\ell}(j) z(i) z(j)\right]$$
(2)

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} \mathbb{E}[r_{\ell}(i)r_{\ell}(j)]z(i)z(j)$$
(3)

$$= \sum_{i=1}^{d} z(i)^2 = ||z||^2 \tag{4}$$

The double summation was reduced to a single sum since $\mathbb{E}[r_{\ell}(i)r_{\ell}(j)] = 0$ if $i \neq j$. Also, if i = j we have that $\mathbb{E}[r_{\ell}(i)r_{\ell}(j)]z(i)z(j) = z(i)^2$

3. To compute $\operatorname{Var}[(z'(\ell))^2]$ we start with computing $\mathbb{E}[(z'(\ell))^4]$.

$$\begin{split} \mathbb{E}[(z'(\ell))^4] &= \mathbb{E}[(\sum_{i=1}^d r_\ell(i)z(i))(\sum_{j=1}^d r_\ell(j)z(j))(\sum_{k=1}^d r_\ell(k)z(k))(\sum_{m=1}^d r_\ell(m)z(m))] \\ &= \mathbb{E}[\sum_{i=1}^d \sum_{j=1}^d \sum_{k=1}^d \sum_{m=1}^d r_\ell(i)r_\ell(j)r_\ell(k)r_\ell(m)z(i)z(j)z(k)z(m)] \\ &= \sum_{i=1}^d \sum_{j=1}^d \sum_{k=1}^d \sum_{m=1}^d \mathbb{E}[r_\ell(i)r_\ell(j)r_\ell(k)r_\ell]z(i)z(j)z(k)z(m) \\ &= \sum_{i=1}^d x(i)^4 + \binom{4}{2} \sum_{i$$

The last transition requires an explanation. The expectation of $r_{\ell}(i)r_{\ell}(j)r_{\ell}(k)r_{\ell}$ when the power of one of the terms $r_{\ell}(i)$ is odd is zero. Thus, we are only left with terms of the form $x(i)^4$ and $x(i)^2x(j)^2$. The coefficient of $x(i)^4$ is 1 since there is only one what to obtain it. The coefficient of $x(i)^2x(j)^2$ is $\binom{4}{2}$ since two of the indexes should be *i* and the two others *j*. There are $\binom{4}{2} = 6$ to get it. In what comes next we use the fact that:

$$\sum_{i < j} z(i)^2 z(j)^2 = \left[\sum_{i=1}^d \sum_{j=1}^d z(i)^2 z(j)^2 - \sum_{i=1}^d z(i)^4\right]/2$$

Picking up where we left off:

$$\mathbb{E}[(z'(\ell))^4] = \sum_{i=1}^d x(i)^4 + 6\sum_{i < j} z(i)^2 z(j)^2$$

=
$$\sum_{i=1}^d x(i)^4 + 3\left[\sum_{i=1}^d \sum_{j=1}^d z(i)^2 z(j)^2 - \sum_{i=1}^d z(i)^4\right]$$

=
$$3\|z\|_2^4 - 2\|z\|_4^2$$

Finally we have that

$$Var(z'(\ell)^2) = \mathbb{E}[(z'(\ell))^4] - \mathbb{E}[(z'(\ell))^2]^2$$

= $3||z||_2^4 - 2||z||_4^2 - (||z||_2^2)^2 = 2(||x||_2^4 - ||x||_4^4) \le 2||x||_2^4$

4. Since $z'(\ell)$ are independent variables we have that

$$\operatorname{Var}[\frac{1}{k}||z'||^2] = \operatorname{Var}[\frac{1}{k}\sum_{\ell=1}^k z'(\ell)^2] = \frac{1}{k^2}\sum_{\ell=1}^k \operatorname{Var}[z'(\ell)^2] = \frac{1}{k}\operatorname{Var}[z'(\ell)^2] \le 2||x||_2^4/k$$

5. From Chebishev's inequality we have that

$$\Pr[|\frac{1}{k} \|z'\|^2 - \mathbb{E}[\frac{1}{k} \|z'\|^2]| \ge t] \le \frac{\operatorname{Var}[\frac{1}{k} \|z'\|^2]}{t^2}$$

Substituting $\mathbb{E}[\frac{1}{k}||z'||^2] = ||z||^2$, $t = \varepsilon ||z||^2$ and $\operatorname{Var}[\frac{1}{k}||z'||^2] \le 2||x||_2^4/k$ we get:

$$\Pr[|\frac{1}{k} \|z'\|^2 - \|z\|]| \ge \varepsilon \|z\|] \le \frac{2\|x\|_2^4/k}{\varepsilon^2 \|z\|^4} = \frac{2}{k\varepsilon^2}$$

By setting $k \geq \frac{2}{\varepsilon^2 \delta}$ we get that $\Pr[|\frac{1}{k} \|z'\|^2 - \|z\|]| \geq \varepsilon \|z\|] \leq \delta$ which means that $\|z\|(1-\varepsilon) \leq \frac{1}{k} \|z'\|^2 \leq \|z\|(1+\varepsilon)$ with probability at least $1-\delta$.