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1 Ashwelde-Winter inequality

In their work [1] Ashwelde and Winter give an incredibly useful bound for the
sums of independent random symmetric matrices. Here we recap the lemma
statement. A short proof due to Roman Vershynin [2] is given as a reference.

Lemma 1.1. Let Xi be independent random d×d symmetric matrices with mean

zero s.t. ‖Xi‖ ≤ 1. Let Sn =
∑n

i=1 Xi, let σ
2
i = ‖Var[Xi]‖ and σ2 =

∑n

i=1 σ
2
i ,

then:

Pr[‖Sn − E[Sn]‖ ≥ t] ≤ d ·max{e−
t2

4σ2 , e
−t
2 }

2 Rank-k approximation

Here we try to approximate AAT by sampling columns of the matrix A. From
this point onwards we assume, w.l.o.g. that ‖A‖fro = 1.

Define n unit norm matrices Ci = A(i)A
T
(i)/‖A(i)‖

2 where Ai is the i’th
column of A. Also define the random matrix valued variable Z which takes
values Ci w.p. pi = ‖A(i)‖

2. Note that p is a distribution since
∑n

i=1 pi =∑n

i=1 ‖A(i)‖
2 = ‖A‖2fro = 1. Let us compute the expectation of Z:

E[Z] =

n∑

i=1

piCi =

n∑

i=1

‖A(i)‖
2(A(i)A

T
(i)/‖A(i)‖

2) =

n∑

i=1

A(i)A
T
(i) = AAT

We will therefore try to approximate AAT by averaging r independent copies
of such variables 1

r

∑r

i=1 Zi.

Pr[‖
1

r

r∑

i=1

Zi −AAT ‖ > ε‖AAT ‖] = Pr[‖

r∑

i=1

(Zi −AAT )‖ > rε‖AAT ‖](1)

= Pr[‖

r∑

i=1

Xi‖ > rε‖AAT ‖/2] (2)

where we define Xi = (Zi−AAT )/2. To apply the matrix chernoff bound above
we need to make sure that the variables Xi meet the conditions. First, they are
clearly independent since Zi are. Also, they have mean zero since E[Zi] = AAT .
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Finally, ‖Xi‖ = ‖(Zi −AAT )/2‖ ≤ ‖Zi‖/2+ ‖AAT ‖/2 ≤ 1. Thus, to apply the
bound above we only need to compute σ2 =

∑r

i=1 ‖E[X
2
i ]‖.

σ2
i ≤ ‖E[X2

i ]‖ ≤ ‖E[(Zi −AAT )2]‖/2 (3)

= ‖E[Z2
i − ZAAT − AATZ + (AAT )2]‖/2 (4)

= ‖AAT − (AAT )2‖/2 ≤ ‖AAT ‖/2 (5)

This gives that σ2 ≤ r‖AAT ‖/2.

Pr[‖
r∑

i=1

Xi‖ > rε‖AAT ‖/2] ≤ m · e−
rε2‖AAT ‖

8

This gives us an ε approximation in the spectral norm with probability at least
1− δ if r ≥ 8

‖AAT ‖ε2 log(m/δ). Another trivial observation is that 1 = ‖A‖fro =

tr(AAT ) ≤ m‖AAT ‖ which gives that 1
‖AAT ‖ ≤ m. To recap, for any matrix,

sampling r = 8m
ε2

log(m/δ) columns is sufficient in order to approximate AAT

in the 2-norm up to multiplicative factor ε‖AAT ‖.

3 Rank-k Approximation

What does this tell us about the SVD. Note that the matrix resulting from the
sampling above can be thought of the matrix ÂÂT where Â ∈ R

m×r contains
rescaled sampled columns of A. More accurately, Â(i) =

1√
r‖A(j)‖Aj if in step i

we picked column j from A.
We want to say that Â somehow represents A well. One way to say this

is that the left singular vectors of Â and A are “similar” (the right singular
vectors are not in the same dimension) To make this more accurate we recap
the property of the best rank-k approximation of A

‖A− PkA‖ = σk+1

Where the projection matrix Pk = UkU
T
k contains the top k left singular vectors

of A. Now consider projecting A on the top left singular vectors of Â instead,
how much do we “loose” by that?

A lemma 4 from [3] makes this exact.

Lemma 3.1. Let P̂k be the projection on the top k left singular vectors of Â,

then

‖A− P̂kA‖
2 ≤ σ2

k+1 + 2‖ÂÂT −AAT ‖

Proof. To see this lets compute the supremum over values ‖x(A−P̂kA)‖, clearly
x is such that xP̂k = 0.

‖A− P̂kA‖
2 = 〈AATx, x〉 (6)

= 〈(AAT − ÂÂT )x, x〉 + 〈ÂÂTx, x〉 (7)

≤ ||AAT − ÂÂT ||+ σ̂2
k+1 (8)
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Where σ̂k+1 is the k + 1’th singular value of Â. Since, σ̂2
k+1 ≤ σ2

k+1 + ||AAT −

ÂÂT || we get the lemma.

Finally, the SVD of Â is a good approximation to the SVD of A in the sense
that

‖A− P̂kA‖ ≤ σk+1 + 2ε‖A‖2
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