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1 Ashwelde-Winter inequality

In their work [1] Ashwelde and Winter give an incredibly useful bound for the
sums of independent random symmetric matrices. Here we recap the lemma
statement. A short proof due to Roman Vershynin [2] is given as a reference.

Lemma 1.1. Let X; be independent random dxd symmetric matrices with mean
zero s.t. || X;|| < 1. Let S, = >0 | X;, let 07 = ||Var[X;]|| and o* =1 07 ,
then: )

Pr[||S, — E[S,]|| > ] < d - max{e 1% ,e 7 }

2 Rank-k approximation

Here we try to approximate AA” by sampling columns of the matrix A. From
this point onwards we assume, w.l.o.g. that [|A]| ;o = 1.

Define n unit norm matrices C; = A(i)Aa)/|\A(i)||2 where A; is the i’th
column of A. Also define the random matrix valued variable Z which takes
values C; w.p. p; = [|A|*>. Note that p is a distribution since Y7 | p; =
it 1A@lI? = 1Al1%,, = 1. Let us compute the expectation of Z:

n

E[Z] =) piCi =) Aq P (A AT /14w 1%) = Y AwAfyy = AAT
i=1 i=1

i=1

We will therefore try to approximate AA” by averaging r independent copies
of such variables 1 37 | Z;.
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Pr{|| Y Xil| > rel|AAT||/2] (2)

i=1

where we define X; = (Z; — AAT) /2. To apply the matrix chernoff bound above
we need to make sure that the variables X; meet the conditions. First, they are
clearly independent since Z; are. Also, they have mean zero since E[Z;] = AAT.



Finally, | X;|| = ||(Z; — AAT) /2| < ||Zi||/2+ ||AAT||/2 < 1. Thus, to apply the
bound above we only need to compute o = >"7_ | [|E[X?]||.
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This gives that o2 < r||AAT||/2.
- T _re?jaaly
Pr[”ZXZ” > re||AAY /2] <m-e g

i=1

This gives us an € approximation in the spectral norm with probability at least
1—0ifr > W log(m/d). Another trivial observation is that 1 = || A fro =

tr(AAT) < m| AAT|| which gives that HA—ilTII < m. To recap, for any matrix,

sampling 7 = 22 log(m/d) columns is sufficient in order to approximate AAT
in the 2-norm up to multiplicative factor e||AAT|.

3 Rank-k Approximation

What does this tell us about the SVD. Note that the matrix resulting from the

sampling above can be thought of the matrix AA:f where A € R™*" contains

rescaled sampled columns of A. More accurately, A;) = mAj if in step 4
J

we picked column j from A.

We want to say that A somehow represents A well. One way to say this
is that the left singular vectors of A and A are “similar” (the right singular
vectors are not in the same dimension) To make this more accurate we recap
the property of the best rank-k approximation of A

A = PLA| = o341

Where the projection matrix P, = U,U[ contains the top k left singular vectors
of A. Now consider projecting A on the top left singular vectors of A instead,
how much do we “loose” by that?

A lemma 4 from [3] makes this exact.

Lemma 3.1. Let Py, be the projection on the top k left singular vectors of A,
then . L
|A = PLA|? < ojpy + 2| AAT — AAT||

Proof. To see this lets compute the supremum over values ||lz(A— PLA)||, clearly
x is such that x P, = 0.

|A—PAI2 = (AATz,z) (6)
(AAT — AAT Yz, z) + (AAT 2, x) (7)
< ||AAT — AAT|| + 67,4 (8)



Where 6341 is the k 4 1’th singular value of A. Since, 67y < opyq +[JAAT —
AAT|| we get the lemma. O

Finally, the SVD of Ais a good approximation to the SVD of A in the sense
that R
[A— PrAll < ok + 2¢]| Al
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