
Nearest neighbor search

Edo Liberty
Algorithms in Data mining

1 Introduction

The problem most commonly known as “nearest neighbor search” is a fundamen-
tal computational problem in computer vision, graphics, data mining, machine
learning, and many other fields. The problem is defined as such:

Definition 1.1. Nearest Neighbor Search: Given a set of points {x1, . . . , xn} ∈
Rd preprocess them into a data structure X of size poly(n, d) in time poly(n, d)
such that nearest neighbor queries can be performed in logarithmic time. In
other words, given a search point q a radius r and X one can return an xi such
the ||q − xi|| ≤ r or nothing if no such point exists. The search for xi should
require at most poly(d, log(n)) time.

Just as an example, consider a simple k-nearest neighbor classifier which, for
each point decides it’s class by the a majority vote over its neighbors classes.
As simplistic as this classifier sounds, it actually performs very well in many
scenarios.

?

Figure 1: Illustration of the k-nearest neighbor classifier. The two classes are
depicted by colors blue and grenn. The red rhombus will be tagged as being
blue since most its neighbors are blue rather than green.

1

2 kd-trees

First, we shall review a well known an widely used algorithm for this problem
which is called kd-trees [1]. The data structure holding the points is a tree.
Each subtree contains all the points in an axis aligned bounding box (maybe
infinite). In each depth in the tree the bounding boxes are split along an axis
(in a round robin order) at the median value of the points in the box. Splitting
stops when the number of points in the box is sufficiently small, say one.

r
q

Figure 2: Illustration of space partition generated by the kd-tree algorithm in
R2. The width of the separating lines indicate the depth in the tree of the
corresponding split.

It is quite simple to prove that inserting and deleting points requiresO(log(n))
time. Thus, the entire construction time is bounded by O(n log(n)).

Searching however is quite a different matter. Let us assume w.o.l.g. that
all points are inside the unit cube. A harmless assumption because we can scale
the entire data set by a constant factor. Also, notice that each point in the
date whose bounding box intersects the query sphere must be examined. More-
over, examining each data point can generate at most O(log(n)) computations.
We will therefore only ask ourselves, how many point boxes have a non zero
intersection with the query sphere.

To make this exercise simpler, consider a simpler case and a variation of kd-
trees. First, all n data points are distributed uniformly and i.i.d. over [0, 1]d.
Also, the space partition splits every box exactly in the middle when the cut is
made along the axes in a round robin order. Note that for such random data,
our simple algorithm produces a very simple partition to the one kd-tree would
have generated since the median point is approximately also in the middle of
the box. (this holds as long as the number of points in a box is large enough)

Let’s assume each box is split t times (the depth of the tree is t). That
means that each axis was split in half t/d (assuming t/d is an integer) times.

2

Therefore, the dimension of our box are [2−t/d, 2−t/d, . . . , 2−t/d]. What is the
probability that a (randomly located) ball of radius r will hit this box?

?

Figure 3: Illustration of space partition generated by the kd-tree algorithm in
R2. The width of the separating lines indicate the depth in the tree of the
corresponding split.

d 2−t /d /2

d 2−t /d−1r

r

Figure 4: If the query point falls more than
√
d2−t/d−1 +r away from the center

of a box it cannot be ‘hit’.

This probability that the box is “hit” by a random query sphere is at most
the volume of a sphere of radius

√
d2−t/d−1 + r since if the query falls outside

this ball it will not intersect the box. Assume, for now, that
√
d2−t/d−1 ≤ r

and so the probability of this event is bounded by the volume of a ball of radius
2r. The volume of such a ball is πd/2(2r)d/(d/2)! (assuming, for convenience,
that d is even). The dependance on the radius is therefore O(rd). Thus, we can

3

expect to inspect only a O(rd) fraction of the boxes (and thus points). Since
r ≤ 1 this can be a significant speedup.

We saw that separating the space into boxes enabled us to search in it more
efficiently. We, however, made some heavy assumptions. One such is that√
d2−t/d−1 ≤ r. This assumption fails when the dimension grows. To see this,

consider that t ≈ log(n) to give boxes of volume roughly 1/n. Requiring that√
d2− log(n)/d ≤ 1 we get that n must be exponential in d, n ≥ 2d. Therefore,

we only gain if the number of points in exponential in the dimension. This is a
result of the so called “curse of dimensionality” which is discussed next.

3 Curse of dimensionality

3.1 kd-trees fail in high dimensions

A prime example for the curse of dimensionality is that a random point in [0, 1]d

is likely to be far from any set of n points in the unit cube. Consider the distance
between the query point q and an input data vector x. We want to show that
‖xi − q‖2 ∈ Ω(d).

First, notice that Pr[|x(j) − q(j)| ≥ 1/4] ≥ 1/2. The expected distance
between x and q is at least d/8. Since q(j) are independently drown, we can
apply the Chernoff bound and get that for all n points in the data set ‖xi−q‖2 ≥
d/16 if d ≥ const · log(n).

Now, consider the kd-tree data structure and algorithm run on a random
query. If the radius of the ball around q is less than d/16 the query is “unin-
teresting” since it is likely to return no results at all. On the other hand, if
the radius is greater than d/16 than the ball around q will cross all the major
partitions along one of the axis. That means that the algorithm will visit at
least 2d partitions.

3.2 Volumes of balls and cubes

Another interesting phenomenon that occurs in high dimensions in the fact
that unit spheres are exponentially smaller (in volume) than their containing
boxes. Let us see this without using the explicit formulas for the volume of d
dimensional spheres.

To compute the volume of a unit sphere, we perform a thought experiment.
First, bound the sphere in a box (with sides of length 2). Then, pick a point in
the box uniformly at random. What is the probability p that the point is also
in the sphere? This is exactly the ratio between the volume of the ball and the
box (2d). More accurately, V = p2d where V is the volume of the sphere.

Now, we can bound p from above. A uniformly random chosen point from
the cube is a vector x ∈ Rd such that each coordinate x(i) is chosen uniformly
from [−1, 1]. The event that x is in the unit sphere is the event that ‖x‖2 =∑d

i=1 x(i)2 ≤ 1. Let zi = x(i)2, and note that E[z(i)] =
∫ 1

−1
1
2 t

2dt = 1/3.

4

Therefore, E[‖x‖2] = d/3. Also,

Var(zi) =

∫ 1

−1

1

2
t4dt− (1/3)2 = 1/5− 1/9 ≤ 1/10

so by Chernoff’s inequality. p = Pr[
∑d

i=1 x(i)2 ≤ 1] = Pr[
∑d

i=1(zi − E[zi]) ≤

1 − d/3] ≤ e−
(d/3)2

4d/10 ≤ e−d/4. This concludes the observation that the fraction
of the volume which is inside the sphere is exponentially small compared to the
cube. A counter intuitive way of viewing this is that almost the entire volume
of the cube is concentrated at the “corners”.

3.3 Orthogonallity of random vectors

It turns out that two random vectors are also almost orthogonal. We can see
this in two ways.

First, we can see that the expected, dot product of any vector x with a
random vector y is small. It is trivial that E[〈x, y〉] = 0 since the distri-
bution of y is symmetric. Moreover, E[〈x, y〉2] = 1/d. To see this, con-
sider y1, y2, . . . , yd where y1 = y and y2, . . . , yd complete y to an orthogonal
basis. Clearly, the distribution of all yi are identical (but not independent)

E[〈x, y〉2] = E[〈x, y1〉2] = E[1d
∑d

i=1〈x, yi〉2] = 1
d‖x‖

2 = 1
d .

It is not hard to show that in fact for any vector x, if y is chosen uniformly
at random from the unit sphere then Pr[〈x, y〉 ≥ t√

d
] ≤ e−t

2/2. First, replace

that uniform distribution over the unit sphere with an i.i.d. distribution of
gaussians y(i) ∼ N (0, 1√

d
). Note that E[‖y‖2] = 1, moreover, from the sharp

concentration of the χ2 distribution we know that E[‖y‖2] ≈ 1. For convenience
we will assume that E[‖y‖2] = 1 and will ignore the small inaccuracy. More-
over, due to the rotational invariance of the Gaussian distribution we have that
any direction is equally likely and thus this new distribution approximates the
uniform distribution over the sphere. Next, notice that due to the rotational

invariance 〈x, y〉 ∼ N (0, ‖x‖√
d

) = N (0, 1√
d
). Therefore, letting Z ∼ N (0, 1) we

have Pr[〈x, y〉 ≥ t√
d
] = Pr[Z ≥ t] ≤ e−t2/2.

References

[1] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18:509–517, September 1975.

5

