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1 Introduction

Definition 1.1 (k-means). Given n vectors x1 . . . , xn ∈ Rd, and an integer k,
find k points µ1, . . . , µk ∈ Rd which minimize the expression:

fk−means =
∑
i∈[n]

min
j∈[k]
‖xi − µj‖2

I words, we aim to find k cluster centers. The cost is the squared distance
between all the points to their closest cluster center. k-means clustering and
Lloyd’s algorithm [6] are probably the most widely used clustering procedure.
This is for three main reasons:

• The objective function is simple and natural.

• Lloyd’s algorithm (which we see below) is simple, efficient and often results
in the optimal solution.

• The results are easily interpretable and are often quite descriptive for real
data sets.

In 1957 Stuart Lloyd suggested a simple iterative algorithm which efficiently
finds a local minimum for this problem. This algorithm (a.k.a. Lloyd’s algo-
rithm) seems to work so well in practice that it is sometimes referred to as
k-means or the k-means algorithm.

This algorithm can be thought of as a potential function reducing algorithm.
The potential function is

fk−means =
∑
j∈[k]

∑
i∈Sj

‖xi − µj‖2.

The sets Sj are the sets of points to which µj is the closest center. In each step
of the algorithm the potential function is reduced. Let’s examine that. First,
if the set of centers µj are fixed, the best assignment is clearly the one which
assigns each data point to its closest center. Also, assume that µ is the center
of a set of points S. Then, if we move µ to 1

|S|
∑
i∈S xi then we only reduce

the potential. This is because 1
|S|
∑
i∈S xi is the best possible value for µ (can

easily be seen by derivation of the cost function).
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Algorithm 1 Lloyd’s Algorithm

µ1, . . . , µk ← randomly chosen centers
while Objective function still improves do
S1, . . . , Sk ← φ
for i ∈ 1, . . . , n do
j ← arg minj′ ‖xi − µj′‖2}
add i to Sj

end for
for j ∈ 1, . . . , k do
µj = 1

|Sj |
∑
i∈Sj

xi
end for

end while

The algorithm therefore terminates in a local minimum. The question of
course is whether we can guaranty that the solution is close to optimal and
under what computational cost.

2 k-means and PCA

This section will present a simple connection between k-means and PCA (similar
ideas given here [3]).

Figure 1: Example of k-means (k = 2) cost broken into a PCA cost and a
k-means cost in dimension k.

First, consider the similarity between the k-means cost function

fk−means = min
µ1,...,µk

∑
i∈[n]

min
j∈[k]
‖xi − µj‖2
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and that of PCA

fPCA = min
Pk

∑
i∈[n]

‖xi − Pkxi‖2 = min
Pk

∑
i∈[n]

min
yi∈Pk

‖xi − yi‖2

where Pk is a projection into dimension k and y ∈ Pk means that Pky = y. The
equality stems from the fact that for any point x and projection matrix P we
have that arg miny∈P ‖x− y‖ = Px.

Now, think about the subspace P ∗k which contains the k optimal centers.
Since µ∗j ∈ P ∗k we have that:

fk−means =
∑
i∈[n]

min
j∈[k]
‖xi − µ∗j‖2 (1)

≥
∑
i∈[n]

min
yi∈P∗k

‖xi − yi‖2 (2)

≥ min
Pk

∑
i∈[n]

min
yi∈Pk

‖xi − yi‖2 (3)

= min
Pk

∑
i∈[n]

‖xi − Pkxi‖2 = fPCA (4)

Now, consider solving k-means on the points yi instead. This intuitively
will be an easier task because they are isometrically embedded into dimension
exactly k (by the projection Pk). Before we do that though, we should argue
that a good clustering for yi results in a good clustering to xi. Let P be any
projection and let yi = Pxi and µ̂j = Pµj . We have that:∑

j∈[k]

∑
i∈Sj

‖xi − µj‖2 ≥
∑
j∈[k]

∑
i∈Sj

‖Pxi − Pµj‖2 (5)

≥
∑
j∈[k]

∑
i∈Sj

‖yi − µ̂j‖2 (6)

≥
∑
j∈[k]

∑
i∈Ŝj

‖yi − µ̂j‖2 = f̂k−means (7)

where Ŝ and µ̂ are the assignments and centers of the projected points yi.
The following gives us a simple algorithm. Compute the PCA of the points

xi into dimension k. Solve k-means on the points yi in dimension k. Output
the resulting clusters and centers.

falg =
∑
j∈[k]

∑
i∈Ŝj

‖xi − µ̂j‖2 (8)

=
∑
j∈[k]

∑
i∈Ŝj

‖xi − yi‖2 + ‖yi − µ̂j‖2 (9)

=
∑
i∈[n]

‖xi − yi‖2 +
∑
j∈[k]

∑
i∈Ŝj

‖yi − µ̂j‖2 (10)

= fPCA + f̂k−means ≤ 2fk−means (11)
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2.1 ε-net argument for fixed dimensions

Since computing the SVD of a matrix (and hence PCA) is well known. We get
that computing a 2-approximation to the k-means problem in dimension d is
possible if it can be done in dimension k.

To solve this problem we adopt a brut force approach. Let Qε be a set of
points inside the unit ball Bk1 such that:

∀z ∈ Bk1 ∃ q ∈ Qε s.t. ‖z − q‖ ≤ ε

Such sets of points exist such that |Qε| ≤ c( 1
ε )k. There are probabilistic con-

structions for such sets as well but we will not go into that. Assuming w.l.o.g.
that ‖xi‖ ≤ 1 we can constrain the centers of the clusters to one of the points
in the ε-net Qε. Let qj be the closes point in Qε to µj (so ‖µj − qj‖ ≤ ε). From
a simple calculation we have that:∑

j∈[k]

∑
i∈Sj

‖xi − qj‖2 ≤
∑
j∈[k]

∑
i∈Sj

‖xi − µj‖2 + 5ε.

To find the best clustering we can exhaustively search through every set of
k points from Qε. For each such set, compute the cost of this assignment on
the original points and return the one minimizing the cost. That will require(c( 1

ε )
k

k

)
iterations over candidate solutions each of which requires O(ndk) time.

The final running time we achieve is 2O(k2 log(1/ε))nd.

3 Sampling

Another simple idea is to sample sufficiently many points from the input as
candidate centers. Ideas similar to the ones described here can be found here
[7].

First, assume we have only one set of points S. Also, denote by µ the centroid
of S, µ = 1

‖S‖
∑
i∈S xi. We will claim that picking one of the members of S as

a centroid is not much worse than picking µ. Let q be a member of S chosen
uniformly at random. Let us compute the expectation of the cost function.

E[
∑
i∈S
‖xi − q‖2] =

∑
i∈S

∑
j∈S

1

n
‖xi − xj‖2 (12)

≤
∑
i∈S

∑
j∈S

1

n
· 2(‖xj − µ‖2 + ‖xi − µ‖2) (13)

≤ 4
∑
i∈S
‖xi − µ‖2. (14)

Using Markov’s inequality we get that

Pr[
∑
i∈S
‖xi − q‖2 ≤ 8

∑
i∈S
‖xi − µ‖2] ≥ 1/2
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If this happens we say that q is a good representative for S. Now consider again
the situation where we have k clusters S1, . . . , Sk. If we are given a set Q which
contains a good candidate for each of the sets. Then, restricting ourselves to
pick centers from Q will result in at most a multiplicative factor of 8 to the cost.

The set Q can be quite small if the set are roughly balanced. Let the smallest
set contain ns points. We therefore succeed in finding a good representative for
any set with probability at least 1

2
ns

n . The probability of failure for any set is

thus bounded by k(1− ns

2n )|Q|. Therefore |Q| = O(k log(k)) if ns ∈ Ω(n/k).
Again, iterating over all subsets of Q of size k we can find an approximate

solution is time O(
(
ck log(k)

k

)
knd) = 2O(k log(k))nd.

4 Advanced reading

In the above, we gave approximation algorithms to the k-means problem. Alas,
any solution can be improved by performing Lloyds algorithm on its output.
Therefore, such algorithms can be considered as ‘seeding’ algorithms which give
initial assignments to Lloyds algorithm. A well known seeding procedure [2] is
called k-means++. In each iteration, the next center is chosen randomly from

Algorithm 2 k-means++ algorithm [2]

C ← {xi} where xi is a uniformly chosen from [n].
for j ∈ [k] do

Pick node x with probability proportional to minµ∈C ‖x− µ‖2
Add x to C

end for
return: C

the input points. The distribution over the points is not uniform. Each point
picked with probability proportional to the minimal square distance from it to
a picked center. Surprisingly, This simple and practical approach already gives
an O(log(k)) approximation guarantee. More precisely, let fk−means(C) denote
the cost of k-means with the set of centers C. Also, denote by C∗ the optimal
set of centers. Then

E[fk−means(C)] ≤ 8(log(k) + 2).

In [1] the authors give a streaming algorithm for this problem. They ma-
nipulate ideas from [2] and combine them with a hirarchical divide and conquer
methodology. See also [4] for a thorough survey and new techniques for cluster-
ing in streams.

Another problem which is very related to k-means is the k-medians problem.
Given a set to points x1, . . . , xn the aim is to find centers µ1, . . . , µk which
minimize:

fk−medians =
∑
i∈[n]

min
j∈[k]
‖xi − µj‖
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Both k-means and the k-median problem admit 1 +ε multiplicative approxima-
tion algorithms but these are far from being simple. See [5] for more details,
related work, and a new core set based solution.
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