0368-3248-01-Algorithms in Data Mining Fall 2013

Lecture 3: Item frequency estimation in streams
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do
not cite this note as a reliable source. If you find mistakes, please inform me.

Say we are given a stream of elements X = [z1,...,zy]| where z; € {a1,...,a,}. Let n; denote the
number of times element a; appeared in the stream, i.e., f; = |{jlz; = a;}|. Our goal is to estimate f; for all
frequent elements. This can be solved exactly by keeping a counter for each element {ay,...,a,}. Alas, this

might require, ©(n) memory. Here we look for methods to approximate the values on f; using o(n) memory.

1 Sampling

The first and simplest approach is to use the uniform sampling approach above. That is, the algorithm draws
samples uniformly at random from the stream with probability £/N. Using Chernoff along with the union
bound indicates that ¢ € O(log(n/d)/e?) is sufficient. Applying the union bound more carefully reduces the
failure probability and therefore reduces ¢, the expected number of samples.

2 Count Min-Sketches

Note that the space dependence of random sampling on € is inversely quadratic which might be problematic
for small values of €. Count-Min sketches were introduced in [1][2] in two similar variants. They reduce the
space complexity dependence on € to only 1/e. The creation of the sketch is given in Algorithm ??. The
notation is that hq, ..., h; are hash functions from the space of elements to the integers [[2/¢]].

Algorithm 1 Count Min Sketch: Add
Input: €, A
t < [log(n/d)], b« [2/¢€]
C <« all zeros matrix of size t X b

for i € [N] do
for j € [t] do
Cli, by (A)] = Cljishy (4] +1
end for
end for
Return: ¢

Algorithm 2 Count Min Sketch: Query
Input: C, a
Return: min;— _; C[j, h;(a)]

To see why this works consider only one row of the sketch matrix. The value of C[1,a] contains the
frequency of @ but also the sum of frequencies of all other items b for which hi(b) = hi(a). Since the
event that hq(b) = hi(a) happens with probability /2 we have E[C[l,a] — fo] < Ne/2 by linearity of

expectation. By Markov’s inequality we have that Pr[C[1,a] — f, > eN] < 1/2. Therefore, any row in C
provides a good approximate count for a with probability at least 1/2. Since we return the minimal value of
log[n/d] such estimates our failure probability reduces to /n. Using the union bound we get that all items
receive a good approximation with probability at least 1 — §. Note that we get the same guaranties as in
the sampling solution but the space requirement reduced from O(log(n/§)e?) to O(log(n/§)/e). Alas, the
update time increases from O(1) to O(log(n/d)). In the next section we see how this can be improved and
even derandomized.

3 Frequent Items

The item frequency approximation problem a brilliantly simple and deterministic algorithm in [3]. This
algorithm was later rediscovered independently by both [4] and [5] who also improved its update time
complexity. Their algorithm reduces the space requirement from O(log(n/d)/e) to O(1/e). Their algorithm
is given in Algorithm box 3. To prove the algorithm’s correctness, let n’ denote the sum of all counters

Algorithm 3 Lossy counting
Input: € € (0,1], A

£+ [1/e]
C + empty map from a to the integers with returned default value 0
for i € [N] do

ClA;)=ClA]+1
if size(C) = £ then

for a € C do
Cla] = Cla] — 1
if Cla] =0 then
del(Clal)
end if
end for
end if
end for
Return: ¢

in the returned map C. Let §; = 1 if the inner loop of the algorithm is executed in the i‘th iteration and
zero else. Note that in each iteration the sum of counters is increased by 1 and reduced by £6;. Therefore
N' = Zf\il 1—45; =N — Ezij\;l 0;. This gives that va:l §; < (N —=N")/t <e(N — N'). Since N’ > 0 and
any single item counter is decreased at most Zfil 0; times we get that f, > Cla] > f, —eN.

This reduces the amount of memory from O(log(n/d)/e) required by Count-Min sketches to O(1/e).
Moreover, some modifications to the data structure in the algorithm [5] allow updates to require only O(1)
operations. This significantly improves on the O(log(n/d)) operations required by Count-Min sketches. As
a last remark, note that this algorithm is deterministic which eliminates the failure probability altogether.

4 Count Sketches

In many cases where frequent items are sought the guaranty that |f; — g;| <eN =¢ E;l:l f; is insufficient.
For example, if the item distribution is very skewed, a few most frequent items can correspond to most of
the appearances in the stream. Thus, a more desirable guaranty would be of the form |f; — ¢;|] < eN =
€ Z;l: i1 i for some prespecified k. Here we assume without loss of generality that the items are indexed
in decreasing frequency order.

One idea from [6] suggests that this in possible by using O(klog(n/d)) approximate counters. First,
we create 3k different approximate counters and distribute elements between them using a hash function.

So, only with probability 1/3 element a falls into the same sketch as one of the top k element. Therefore,

wi

th probability 2/3, the sketch containing a will give a frequency approximation guaranty proportional to

52?:1@ 41 fj- Since this only happens with probability 2/3 we must repeat the construction O(log(n/d))
times and return the median of the results returned by the counters.

The second idea is to alter the approximate counters themselves by incorporating a random sign into the

summation. That is, when element a is encountered, its counter is incremented by s(a) where s is a hash
function mapping items from the universe uniformly into {—1,1}. This reduces the approximation error to

be

relative to O(m)

Algorithm 4 Count Sketch: Add

Input: ¢, A
C « all zeros matrix of size t X b
for i € [N] do
for j € [t] do
Clj, h;(A)] = C[j, by (A:)] + 5, (Ai)
end for
end for
Return: C

Algorithm 5 Count Sketch: Query

Input: C, a
Return: median;—,_; C[j, h;(a)]s(a)

References

[1]

Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch
and its applications. J. Algorithms, 55(1):58-75, 2005.

Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data streams. In
VLDB, pages 346-357, 2002.

Jayadev Misra and David Gries. Finding repeated elements. Technical report, Ithaca, NY, USA, 1982.

Erik D. Demaine, Alejandro Lépez-Ortiz, and J. Ian Munro. Frequency estimation of internet packet
streams with limited space. In Proceedings of the 10th Annual European Symposium on Algorithms, ESA
'02, pages 348-360, London, UK, UK, 2002. Springer-Verlag.

Richard M. Karp, Christos H. Papadimitriou, and Scott Shenker. A simple algorithm for finding frequent
elements in streams and bags. ACM Transactions on Database Systems, 28:2003, 2003.

Moses Charikar, Kevin Chen, and Martin Farach-colton. Finding frequent items in data streams. pages
693-703, 2002.

