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Lecture 3: Item frequency estimation in streams
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

Say we are given a stream of elements X = [x1, . . . , xN ] where xi ∈ {a1, . . . , an}. Let ni denote the
number of times element ai appeared in the stream, i.e., fi = |{j|xj = ai}|. Our goal is to estimate fi for all
frequent elements. This can be solved exactly by keeping a counter for each element {a1, . . . , an}. Alas, this
might require, Θ(n) memory. Here we look for methods to approximate the values on fi using o(n) memory.

1 Sampling

The first and simplest approach is to use the uniform sampling approach above. That is, the algorithm draws
samples uniformly at random from the stream with probability `/N . Using Chernoff along with the union
bound indicates that ` ∈ O(log(n/δ)/ε2) is sufficient. Applying the union bound more carefully reduces the
failure probability and therefore reduces `, the expected number of samples.

2 Count Min-Sketches

Note that the space dependence of random sampling on ε is inversely quadratic which might be problematic
for small values of ε. Count-Min sketches were introduced in [1][2] in two similar variants. They reduce the
space complexity dependence on ε to only 1/ε. The creation of the sketch is given in Algorithm ??. The
notation is that h1, . . . , ht are hash functions from the space of elements to the integers [d2/εe].

Algorithm 1 Count Min Sketch: Add

Input: ε,A
t← dlog(n/δ)e, b← d2/εe
C ← all zeros matrix of size t× b
for i ∈ [N ] do
for j ∈ [t] do
C[j, hj(Ai)] = C[j, hj(Ai)] + 1

end for
end for
Return: C

Algorithm 2 Count Min Sketch: Query

Input: C, a
Return: minj=1,...,t C[j, hj(a)]

To see why this works consider only one row of the sketch matrix. The value of C[1, a] contains the
frequency of a but also the sum of frequencies of all other items b for which h1(b) = h1(a). Since the
event that h1(b) = h1(a) happens with probability ε/2 we have E[C[1, a] − fa] ≤ Nε/2 by linearity of
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expectation. By Markov’s inequality we have that Pr[C[1, a] − fa ≥ εN ] ≤ 1/2. Therefore, any row in C
provides a good approximate count for a with probability at least 1/2. Since we return the minimal value of
log[n/δ] such estimates our failure probability reduces to δ/n. Using the union bound we get that all items
receive a good approximation with probability at least 1 − δ. Note that we get the same guaranties as in
the sampling solution but the space requirement reduced from O(log(n/δ)ε2) to O(log(n/δ)/ε). Alas, the
update time increases from O(1) to O(log(n/δ)). In the next section we see how this can be improved and
even derandomized.

3 Frequent Items

The item frequency approximation problem a brilliantly simple and deterministic algorithm in [3]. This
algorithm was later rediscovered independently by both [4] and [5] who also improved its update time
complexity. Their algorithm reduces the space requirement from O(log(n/δ)/ε) to O(1/ε). Their algorithm
is given in Algorithm box 3. To prove the algorithm’s correctness, let n′ denote the sum of all counters

Algorithm 3 Lossy counting

Input: ε ∈ (0, 1], A
`← d1/εe
C ← empty map from a to the integers with returned default value 0
for i ∈ [N ] do
C[Ai] = C[Ai] + 1
if size(C) = ` then

for a ∈ C do
C[a] = C[a]− 1
if C[a] = 0 then
del(C[a])

end if
end for

end if
end for
Return: C

in the returned map C. Let δi = 1 if the inner loop of the algorithm is executed in the i‘th iteration and
zero else. Note that in each iteration the sum of counters is increased by 1 and reduced by `δi. Therefore
N ′ =

∑N
i=1 1− `δi = N − `

∑N
i=1 δi. This gives that

∑N
i=1 δi ≤ (N −N ′)/` ≤ ε(N −N ′). Since N ′ ≥ 0 and

any single item counter is decreased at most
∑N

i=1 δi times we get that fa ≥ C[a] ≥ fa − εN .
This reduces the amount of memory from O(log(n/δ)/ε) required by Count-Min sketches to O(1/ε).

Moreover, some modifications to the data structure in the algorithm [5] allow updates to require only O(1)
operations. This significantly improves on the O(log(n/δ)) operations required by Count-Min sketches. As
a last remark, note that this algorithm is deterministic which eliminates the failure probability altogether.

4 Count Sketches

In many cases where frequent items are sought the guaranty that |fi − gi| ≤ εN = ε
∑n

j=1 fj is insufficient.
For example, if the item distribution is very skewed, a few most frequent items can correspond to most of
the appearances in the stream. Thus, a more desirable guaranty would be of the form |fi − gi| ≤ εN =
ε
∑n

j=k+1 fj for some prespecified k. Here we assume without loss of generality that the items are indexed
in decreasing frequency order.

One idea from [6] suggests that this in possible by using O(k log(n/δ)) approximate counters. First,
we create 3k different approximate counters and distribute elements between them using a hash function.
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So, only with probability 1/3 element a falls into the same sketch as one of the top k element. Therefore,
with probability 2/3, the sketch containing a will give a frequency approximation guaranty proportional to
ε
∑n

j=k+1 fj . Since this only happens with probability 2/3 we must repeat the construction O(log(n/δ))
times and return the median of the results returned by the counters.

The second idea is to alter the approximate counters themselves by incorporating a random sign into the
summation. That is, when element a is encountered, its counter is incremented by s(a) where s is a hash
function mapping items from the universe uniformly into {−1, 1}. This reduces the approximation error to

be relative to O(
√∑n

j=k+1 f
2
j ).

Algorithm 4 Count Sketch: Add

Input: ε, A
C ← all zeros matrix of size t× b
for i ∈ [N ] do
for j ∈ [t] do
C[j, hj(Ai)] = C[j, hj(Ai)] + sj(Ai)

end for
end for
Return: C

Algorithm 5 Count Sketch: Query

Input: C, a
Return: medianj=1,...,t C[j, hj(a)]s(a)
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