
0368-3248-01-Algorithms in Data Mining Fall 2013

Lecture 3: Item frequency estimation in streams
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

Say we are given a stream of elements X = [x1, . . . , xN] where xi ∈ {a1, . . . , an}. Let ni denote the
number of times element ai appeared in the stream, i.e., fi = |{j|xj = ai}|. Our goal is to estimate fi for all
frequent elements. This can be solved exactly by keeping a counter for each element {a1, . . . , an}. Alas, this
might require, Θ(n) memory. Here we look for methods to approximate the values on fi using o(n) memory.

1 Sampling

The first and simplest approach is to use the uniform sampling approach above. That is, the algorithm draws
samples uniformly at random from the stream with probability `/N . Using Chernoff along with the union
bound indicates that ` ∈ O(log(n/δ)/ε2) is sufficient. Applying the union bound more carefully reduces the
failure probability and therefore reduces `, the expected number of samples.

2 Count Min-Sketches

Note that the space dependence of random sampling on ε is inversely quadratic which might be problematic
for small values of ε. Count-Min sketches were introduced in [1][2] in two similar variants. They reduce the
space complexity dependence on ε to only 1/ε. The creation of the sketch is given in Algorithm ??. The
notation is that h1, . . . , ht are hash functions from the space of elements to the integers [d2/εe].

Algorithm 1 Count Min Sketch: Add

Input: ε,A
t← dlog(n/δ)e, b← d2/εe
C ← all zeros matrix of size t× b
for i ∈ [N] do
for j ∈ [t] do
C[j, hj(Ai)] = C[j, hj(Ai)] + 1

end for
end for
Return: C

Algorithm 2 Count Min Sketch: Query

Input: C, a
Return: minj=1,...,t C[j, hj(a)]

To see why this works consider only one row of the sketch matrix. The value of C[1, a] contains the
frequency of a but also the sum of frequencies of all other items b for which h1(b) = h1(a). Since the
event that h1(b) = h1(a) happens with probability ε/2 we have E[C[1, a] − fa] ≤ Nε/2 by linearity of

1

expectation. By Markov’s inequality we have that Pr[C[1, a] − fa ≥ εN] ≤ 1/2. Therefore, any row in C
provides a good approximate count for a with probability at least 1/2. Since we return the minimal value of
log[n/δ] such estimates our failure probability reduces to δ/n. Using the union bound we get that all items
receive a good approximation with probability at least 1 − δ. Note that we get the same guaranties as in
the sampling solution but the space requirement reduced from O(log(n/δ)ε2) to O(log(n/δ)/ε). Alas, the
update time increases from O(1) to O(log(n/δ)). In the next section we see how this can be improved and
even derandomized.

3 Frequent Items

The item frequency approximation problem a brilliantly simple and deterministic algorithm in [3]. This
algorithm was later rediscovered independently by both [4] and [5] who also improved its update time
complexity. Their algorithm reduces the space requirement from O(log(n/δ)/ε) to O(1/ε). Their algorithm
is given in Algorithm box 3. To prove the algorithm’s correctness, let n′ denote the sum of all counters

Algorithm 3 Lossy counting

Input: ε ∈ (0, 1], A
`← d1/εe
C ← empty map from a to the integers with returned default value 0
for i ∈ [N] do
C[Ai] = C[Ai] + 1
if size(C) = ` then

for a ∈ C do
C[a] = C[a]− 1
if C[a] = 0 then
del(C[a])

end if
end for

end if
end for
Return: C

in the returned map C. Let δi = 1 if the inner loop of the algorithm is executed in the i‘th iteration and
zero else. Note that in each iteration the sum of counters is increased by 1 and reduced by `δi. Therefore
N ′ =

∑N
i=1 1− `δi = N − `

∑N
i=1 δi. This gives that

∑N
i=1 δi ≤ (N −N ′)/` ≤ ε(N −N ′). Since N ′ ≥ 0 and

any single item counter is decreased at most
∑N

i=1 δi times we get that fa ≥ C[a] ≥ fa − εN .
This reduces the amount of memory from O(log(n/δ)/ε) required by Count-Min sketches to O(1/ε).

Moreover, some modifications to the data structure in the algorithm [5] allow updates to require only O(1)
operations. This significantly improves on the O(log(n/δ)) operations required by Count-Min sketches. As
a last remark, note that this algorithm is deterministic which eliminates the failure probability altogether.

4 Count Sketches

In many cases where frequent items are sought the guaranty that |fi − gi| ≤ εN = ε
∑n

j=1 fj is insufficient.
For example, if the item distribution is very skewed, a few most frequent items can correspond to most of
the appearances in the stream. Thus, a more desirable guaranty would be of the form |fi − gi| ≤ εN =
ε
∑n

j=k+1 fj for some prespecified k. Here we assume without loss of generality that the items are indexed
in decreasing frequency order.

One idea from [6] suggests that this in possible by using O(k log(n/δ)) approximate counters. First,
we create 3k different approximate counters and distribute elements between them using a hash function.

2

So, only with probability 1/3 element a falls into the same sketch as one of the top k element. Therefore,
with probability 2/3, the sketch containing a will give a frequency approximation guaranty proportional to
ε
∑n

j=k+1 fj . Since this only happens with probability 2/3 we must repeat the construction O(log(n/δ))
times and return the median of the results returned by the counters.

The second idea is to alter the approximate counters themselves by incorporating a random sign into the
summation. That is, when element a is encountered, its counter is incremented by s(a) where s is a hash
function mapping items from the universe uniformly into {−1, 1}. This reduces the approximation error to

be relative to O(
√∑n

j=k+1 f
2
j).

Algorithm 4 Count Sketch: Add

Input: ε, A
C ← all zeros matrix of size t× b
for i ∈ [N] do
for j ∈ [t] do
C[j, hj(Ai)] = C[j, hj(Ai)] + sj(Ai)

end for
end for
Return: C

Algorithm 5 Count Sketch: Query

Input: C, a
Return: medianj=1,...,t C[j, hj(a)]s(a)

References

[1] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch
and its applications. J. Algorithms, 55(1):58–75, 2005.

[2] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data streams. In
VLDB, pages 346–357, 2002.

[3] Jayadev Misra and David Gries. Finding repeated elements. Technical report, Ithaca, NY, USA, 1982.

[4] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency estimation of internet packet
streams with limited space. In Proceedings of the 10th Annual European Symposium on Algorithms, ESA
’02, pages 348–360, London, UK, UK, 2002. Springer-Verlag.

[5] Richard M. Karp, Christos H. Papadimitriou, and Scott Shenker. A simple algorithm for finding frequent
elements in streams and bags. ACM Transactions on Database Systems, 28:2003, 2003.

[6] Moses Charikar, Kevin Chen, and Martin Farach-colton. Finding frequent items in data streams. pages
693–703, 2002.

3

