
0368-3248-01-Algorithms in Data Mining Fall 2013

Lecture 4: Home Assignment, Due Dec 3rd
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

1 Probabilistic inequalities

setup

In this question you will be asked to derive the three most used probabilistic inequalities for a specific random
variable. Let x1, . . . , xn be independent {−1, 1} valued random variables. Each xi takes the value 1 with
probability 1/2 and −1 else. Let X =

∑n
i=1 xi.

questions

1. Let the random variable Y be defined as Y = |X|. Prove that Markov’s inequality holds for Y . Hint:
note that Y takes integer values. Also, there is no need to compute Pr[Y = i].

2. Prove Chebyshev’s inequality for the above random variable X. You can use the fact that Markov’s
inequality holds for any positive variable regardless of your success (or lack of if) in the previous
question. Hint: Var[X] = E[(X − E[X])2].

3. Argue that

Pr[X > a] = Pr[Πn
i=1e

λxi > eλa] ≤ E[Πn
i=1e

λxi]

eλa

for any λ ∈ [0, 1]. Explain each transition.

4. Argue that:
E[Πn

i=1e
λxi]

eλa
=

Πn
i=1E[eλxi]

eλa
=

(E[eλx1])n

eλa

What properties of the random variables xi did you use in each transition?

5. Conclude that Pr[X > a] ≤ e− a2

2n by showing that:

∃ λ ∈ [0, 1] s.t.
(E[eλx1])n

eλa
≤ e− a2

2n

Hint: For the hyperbolic cosine function we have cosh(x) = 1
2 (ex + e−x) ≤ ex2/2 for x ∈ [0, 1].

1

2 Approximating the size of a graph

setup

In this question we will try to approximate the size of a graph. A graph G(V,E) is a set of nodes |V | = n
and a set of edges |E| = m. Each edge e ∈ V × V is a set of two nodes which support it. We assume the
graph is simple which means there are no duplicate edges and no self loops (i.e. an edge e = (u, u)). The
degree of a node, deg(u), is the number of edges which it supports. More formally deg(u) = |{e ∈ E|u ∈ e}|.
The degree of each node in the graph is at least 1. The question refers to the following sampling procedure:

1. e = (u, v)← an edge uniformly at random from E.

2. with probability 1/2

3. return u

4. else

5. return v

Throughout this question we assume that i) we can sample edges uniformly from the graph ii) that the
number of edges m in known iii) that given a node u we can easily compute deg(u). The value of n,
however, is unknown.

questions

1. Let p(u) denote the probability that the sampling procedure returns a specific node, u. Compute p(u)
as a function of deg(u) and m. (Note:

∑
u∈V deg(u) = 2m)

2. Let f(u) = 2m
deg(u) . Compute:

Ex∼smp[f(x)]

where x ∼ smp denotes that x is chosen according to the distribution on the nodes generated by the
above sampling procedure.

3. We say that a graph is d-degree-bounded if maxu∈V deg(u) ≤ d. Show that for a d-degree-bounded
graph:

Varx∼smp[f(x)] ≤ dn2

4. Let Y = 1
s

∑s
i=1 f(xi) where xi are nodes chosen independently from the graph according to the above

sampling procedure. Compute E[Y] and show that Var[Y] ≤ dn2/s.

5. Use Chebyshev’s inequality to find a value for s such that for any d-degree-bounded graph and any
two constants ε ∈ [0, 1] and δ ∈ [0, 1]:

Pr[|Y − n| > εn] < δ.

s should be a function of d, ε and δ.

2

3 Approximate median

setup

Given a list A of n numbers a1, . . . , an, we define the rank of an element r(ai) as the number of elements
which are smaller than it. For example, the smallest number has rank zero and the largest has rank n− 1.
Equal elements are ordered arbitrarily. The median of A is an element a such that r(a) = n/2 (rounded
either up or down). An α-approximate-median is a number a such that:

n(1/2− α) ≤ r(a) ≤ n(1/2 + α)

In this question we sample k elements uniformly at random with replacement from the list A. Let the samples
be {x1, . . . , xk} = X. You will be asked to show that the median of X is an α-approximate-median of A.

questions

1. What is the probability the a randomly chosen element x is such that:

r(x) > n(1/2 + α)

2. Let us define X>α as the set of samples whose rank is greater than n(1/2 + α). More precisely,
X>α = {xi ∈ X|r(xi) > n(1/2 + α)}. Similarly we define X<α = {xi ∈ X|r(xi) < n(1/2− α)}. Prove
that if |X>α| < k/2 and |X<α| < k/2 then the median of X is an α-approximate-median of A.

3. Let Z = |X>α|. Find t for which:

Pr[Z ≥ k/2] = Pr[Z ≥ (1 + t)E[Z]]

4. Bound from above the probability that Z ≥ k/2 as tightly as possible. If you do so using a probabilistic
inequality, justify your choice.

5. Compute the minimal value for k which will guarantee that |X>α| < k/2 and |X<α| < k/2 with
probability at least 1− δ.

3

4 Simple high capacity hashing

setup

In this question we try to evaluate the capacity of a special hash table. For simplicity, we assume that the
hashed elements are a subset of [N] ([N] denots the set {1, . . . , N}). The hash table consists of an array A
of length n and L perfect hash functions h` : [N] → [n]. Throughout the exercise we assume the existence
of perfect hash functions. That is, Pr[h(x) = i] = 1/n for all x ∈ [N] and i ∈ [n] independently of the values
h(x′). For convenience we also assume that the entries in A are initialized to the value 0.

Algorithm 1 Add(x)

for ` ∈ [L] do
if A[h`(x)] == 0 or A[h`(x)] == x then
A[h`(x)] = x
Return Success

end if
end for
Return Fail

Algorithm 2 Query(x)

for ` ∈ [L] do
if A[h`(x)] == x then

Return True
else if A[h`(x)] == 0 then

Return False
end if

end for
Return False

questions

1. Argue the correctness of the hashing scheme. a) If an element was successfully added to the table by
Add(x) it will be found by Query(x). b) If an element was not added to the table by Add(x) it will
not be found by Query(x).

2. Assume that exactly m cells in the array are occupied. That is, m cells contain values A[j] > 0 and
for the rest A[j] = 0. Given a new element x which is in not stored in the hash table. What is the
probability that location h1(x) in A is occupied.

3. What is the probability that procedure Add(x) fails for an element x not in the hash table? (here we
still assume there are exactly m elements already in the table)

4. Assume we start with an empty hash table and insert m elements one after the other. Use the union
bound to get a value for L for which Add(x) succeeds in all m element insertions with probability at
least 1− δ

5. Argue that the expected running time of both Add(x) and Query(x) is O(1). That is, it does not
depend on L.

4

