
0368-3248-01-Algorithms in Data Mining Fall 2013

Lecture 4: Home Assignment, Due Dec 3rd
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

1 Probabilistic inequalities

setup

In this question you will be asked to derive the three most used probabilistic inequalities for a specific random
variable. Let x1, . . . , xn be independent {−1, 1} valued random variables. Each xi takes the value 1 with
probability 1/2 and −1 else. Let X =

∑n
i=1 xi.

questions

1. Let the random variable Y be defined as Y = |X|. Prove that Markov’s inequality holds for Y . Hint:
note that Y takes integer values. Also, there is no need to compute Pr[Y = i].

2. Prove Chebyshev’s inequality for the above random variable X. You can use the fact that Markov’s
inequality holds for any positive variable regardless of your success (or lack of if) in the previous
question. Hint: Var[X] = E[(X − E[X])2].

3. Argue that

Pr[X > a] = Pr[Πn
i=1e

λxi > eλa] ≤ E[Πn
i=1e

λxi]

eλa

for any λ ∈ [0, 1]. Explain each transition.

4. Argue that:
E[Πn

i=1e
λxi]

eλa
=

Πn
i=1E[eλxi]

eλa
=

(E[eλx1])n

eλa

What properties of the random variables xi did you use in each transition?

5. Conclude that Pr[X > a] ≤ e− a2

2n by showing that:

∃ λ ∈ [0, 1] s.t.
(E[eλx1])n

eλa
≤ e− a2

2n

Hint: For the hyperbolic cosine function we have cosh(x) = 1
2 (ex + e−x) ≤ ex2/2 for x ∈ [0, 1].

1

answers

1.

E[Y] =

n∑
i=0

Pr[Y = i] · i

=

t∑
i=0

Pr[Y = i] · i+

n∑
i=t+1

Pr[Y = i] · i

≥
n∑

i=t+1

Pr[Y = i] · i

≥
n∑

i=t+1

Pr[Y = i] · t

= t · Pr[Y > t]

Therefore, E[Y] ≥ t · Pr[Y > t] which is Markov’s inequality.

2. This is identical to the general proof of Chebyshev’s inequality. We define Z = (X −E[X])2. Since Z
is positive we can use Markov’s inequality for it and get:

Pr[|X − E[X]| > t] = Pr[Z > t2] ≤ E[Z]

t2
=

Var[X]

t2

Here we used that E[Z] = E[(X − E[X])2] = Var[X].

3. First transition:

Pr[X > a] = Pr[λX > λa] = Pr[eλX > eλa] = Pr[eλ
∑
xi > eλa] = Pr[Πn

i=1e
λxi > eλa]

These hold due to the monotonicity of multiplication by a positive constant and exponentiation. Now,
using Markov’s inequality on the last inequality we get:

Pr[Πn
i=1e

λxi > eλa] ≤ E[Πn
i=1e

λxi]

eλa

4. The first transition is true due to the independence of the variables xi. This means that eλxi are
independent. The second transition is due to all expectations of eλxi being equal which stems from xi
being identically distributed.

5. First, we compute the expectation of eλxi

E[eλxi] =
1

2
eλ +

1

2
e−λ = cosh(λ) ≤ eλ

2/2

From the above we have that Pr[X > a] ≤ enλ2/2−λa. Setting λ = a/n we get enλ
2/2−λa = e−

a2

2n which
concludes the proof.

2

2 Approximating the size of a graph

setup

In this question we will try to approximate the size of a graph. A graph G(V,E) is a set of nodes |V | = n
and a set of edges |E| = m. Each edge e ∈ V × V is a set of two nodes which support it. We assume the
graph is simple which means there are no duplicate edges and no self loops (i.e. an edge e = (u, u)). The
degree of a node, deg(u), is the number of edges which it supports. More formally deg(u) = |{e ∈ E|u ∈ e}|.
The degree of each node in the graph is at least 1. The question refers to the following sampling procedure:

1. e = (u, v)← an edge uniformly at random from E.

2. with probability 1/2

3. return u

4. else

5. return v

Throughout this question we assume that i) we can sample edges uniformly from the graph ii) that the
number of edges m in known iii) that given a node u we can easily compute deg(u). The value of n,
however, is unknown.

questions

1. Let p(u) denote the probability that the sampling procedure returns a specific node, u. Compute p(u)
as a function of deg(u) and m. (Note:

∑
u∈V deg(u) = 2m)

2. Let f(u) = 2m
deg(u) . Compute:

Ex∼smp[f(x)]

where x ∼ smp denotes that x is chosen according to the distribution on the nodes generated by the
above sampling procedure.

3. We say that a graph is d-degree-bounded if maxu∈V deg(u) ≤ d. Show that for a d-degree-bounded
graph:

Varx∼smp[f(x)] ≤ dn2

4. Let Y = 1
s

∑s
i=1 f(xi) where xi are nodes chosen independently from the graph according to the above

sampling procedure. Compute E[Y] and show that Var[Y] ≤ dn2/s.

5. Use Chebyshev’s inequality to find a value for s such that for any d-degree-bounded graph and any
two constants ε ∈ [0, 1] and δ ∈ [0, 1]:

Pr[|Y − n| > εn] < δ.

s should be a function of d, ε and δ.

3

answers

1. A node is chosen only if an edge it is adjacent to is picked with probability and then it is the node
picked between the two. The first event happens with probability deg(u)/m since the edges a re chosen
uniformly at random. The second event happens with probability 1/2 independently of the first event.

This gives p(u) = deg(u)
m

deg(2)
2 = deg(u)

2m .

2. By the definition to the expectation:

Ex∼smp[f(x)] =
∑
u∈V

p(u)f(u) =
∑
u∈V

deg(u)

2m

2m

deg(u)
=

∑
u∈V

1 = n

3. We say that a graph is d-degree-bounded if maxu∈V deg(u) ≤ d. Show that for a d-degree-bounded
graph:

Varx∼smp[f(x)] ≤ Ex∼smp[f2(x)] =
∑
u∈V

deg(u)

2m
(

2m

deg(u)
)2 =

∑
u∈V

2m

deg(u)

Since deg(u) ≥ 1 then
∑
u∈V

2m
deg(u) ≤

∑
u∈V

2m
1 = 2mn. Also, since the graph is d-degree-bounded

2m =
∑
u∈V deg(u) ≤ nd thus 2mn ≤ dn2.

4. Y is the average of s independent copies of f(x) and therefore, by linearity of the expectation, we
have that E[Y] = E[f] = n. Moreover, Since the nodes xi are chosen independently we have that
Var[Y] = 1

s2

∑s
i=1 Var[f(xi)]. Since f(xi) distribute identically and substituting Var(x) ≤ dn2 we get

1
s2

∑s
i=1 Var[f(xi)] ≤ s

s2 dn
2 = dn2/s.

5. Since E[Y] = n we get that the above holds if

Pr[|Y − E[n]| > εn] <
Var[Y]

ε2n2
≤ dn2/s

ε2n2
=

d

sε2

The condition that d
sε2 ≤ δ holds for s ≥ d

δε2

4

3 Approximate median

setup

Given a list A of n numbers a1, . . . , an, we define the rank of an element r(ai) as the number of elements
which are smaller than it. For example, the smallest number has rank zero and the largest has rank n− 1.
Equal elements are ordered arbitrarily. The median of A is an element a such that r(a) = n/2 (rounded
either up or down). An α-approximate-median is a number a such that:

n(1/2− α) ≤ r(a) ≤ n(1/2 + α)

In this question we sample k elements uniformly at random with replacement from the list A. Let the samples
be {x1, . . . , xk} = X. You will be asked to show that the median of X is an α-approximate-median of A.

questions

1. What is the probability the a randomly chosen element x is such that:

r(x) > n(1/2 + α)

2. Let us define X>α as the set of samples whose rank is greater than n(1/2 + α). More precisely,
X>α = {xi ∈ X|r(xi) > n(1/2 + α)}. Similarly we define X<α = {xi ∈ X|r(xi) < n(1/2− α)}. Prove
that if |X>α| < k/2 and |X<α| < k/2 then the median of X is an α-approximate-median of A.

3. Let Z = |X>α|. Find t for which:

Pr[Z ≥ k/2] = Pr[Z ≥ (1 + t)E[Z]]

4. Bound from above the probability that Z ≥ k/2 as tightly as possible. If you do so using a probabilistic
inequality, justify your choice.

5. Compute the minimal value for k which will guarantee that |X>α| < k/2 and |X<α| < k/2 with
probability at least 1− δ.

5

answers

1. There are n(1/2−α) elements for which r(x) > n(1/2 +α). Since the element is chosen uniformly, the
probability of that happening is (1/2− α).

2. First we note that the median of X cannot be either in X>α or in X<α. This is simply because each
of them includes less than half of the elements in X. Moreover, by the definitions of X>α and X<α we
have:

n(1/2− α) ≤ r(median(X)) and r(median(X)) ≤ n(1/2 + α)

which means that median(X) is an α-approximate-median of A.

3. Since the probability of a sample being in X>α is exactly 1/2 − α and since we have k independent
samples, E[Z] = E[|X>α|] = k(1/2− α). Solving for t we get

(1 + t)E[Z] = k/2 → (1 + t)(1/2− α) = 1/2 → t =
2α

1− 2α

4. Since the value of Z is the sum of independent indicator variables we can apply Chernoff’s inequality.
Denoting µ = E[Z] = k(1/2− α) and t = 2α

1−2α we have:

Pr[Z ≥ k/2] = Pr[Z ≥ (1 + t)µ] ≤ e−µt
2/4

5. Similarly to the the above we can argue that

Pr[|X<α| ≥ k/2] ≤ e−µt
2/4

From the union bound we have that the probability of the event that |X<α| ≥ k/2 or that |X>α| ≥ k/2
is at most the sum of their probabilities.

Pr [|X<α| ≥ k/2 ∪ |X>α| ≥ k/2] ≤ Pr [|X<α| ≥ k/2] + Pr[|X>α| ≥ k/2] ≤ 2e−µt
2/4

Demanding that this failure probability is less than δ we guarantee success with probability at least
1− δ. Substituting µ = k(1/2− α) and t = 2α

1−2α this is achieved for

2e−µt
2/4 < δ → k >

4 log(2/δ)(1/2− α)

α2

6

4 Simple high capacity hashing

setup

In this question we try to evaluate the capacity of a special hash table. For simplicity, we assume that the
hashed elements are a subset of [N] ([N] denots the set {1, . . . , N}). The hash table consists of an array A
of length n and L perfect hash functions h` : [N] → [n]. Throughout the exercise we assume the existence
of perfect hash functions. That is, Pr[h(x) = i] = 1/n for all x ∈ [N] and i ∈ [n] independently of the values
h(x′). For convenience we also assume that the entries in A are initialized to the value 0.

Algorithm 1 Add(x)

for ` ∈ [L] do
if A[h`(x)] == 0 or A[h`(x)] == x then
A[h`(x)] = x
Return Success

end if
end for
Return Fail

Algorithm 2 Query(x)

for ` ∈ [L] do
if A[h`(x)] == x then

Return True
else if A[h`(x)] == 0 then

Return False
end if

end for
Return False

questions

1. Argue the correctness of the hashing scheme. a) If an element was successfully added to the table by
Add(x) it will be found by Query(x). b) If an element was not added to the table by Add(x) it will
not be found by Query(x).

2. Assume that exactly m cells in the array are occupied. That is, m cells contain values A[j] > 0 and
for the rest A[j] = 0. Given a new element x which is in not stored in the hash table. What is the
probability that location h1(x) in A is occupied.

3. What is the probability that procedure Add(x) fails for an element x not in the hash table? (here we
still assume there are exactly m elements already in the table)

4. Assume we start with an empty hash table and insert m elements one after the other. Use the union
bound to get a value for L for which Add(x) succeeds in all m element insertions with probability at
least 1− δ

5. Argue that the expected running time of both Add(x) and Query(x) is O(1). That is, it does not
depend on L.

7

answers

1. If Add(x) returned “success” then for some ` we have A[h`(x)] = x and for any `′ < ` it holds that
A[h`′(x)] 6∈ {0, x}. Therefore it will be found by Query(x). Also, if x was not added than it cannot be
found by Query since it returns “True” only if A[h`(x)] = x for some `.

2. Since x is was not added and since h1 is a perfect hash function then Pr[h1(x) = i] = 1/n for all i ∈ [n].
Since there are m occupied cells this sums to Pr[A[h1(x)] > 0] = m/n.

3. Add fails only if for each to the ` ∈ [L] hash functions A[h`(x)] > 0. Since they are chosen independently
of each other we have

Pr[Add(x) fails] = (m/n)L

4. Using the union bound we have that Pr[fail] ≤
∑
i∈[m]((i− 1)/n)L. This is because there are at most

i−1 elements in the hash table when we insert the i’th one. Computing this sum can be made simpler
by bounding it with an integral.

∑
i∈[m]

((i− 1)/n)L ≤
∫ m+1

t=1

((t− 1)/n)Ldt =

∫ m

t=0

(t/n)Ldt =
1

L+ 1
(m/n)L+1

That said, even a bound as simple as m(m/n)L would have sufficed. For the sake of simplicity let
us use the latter. We obtain that the failure probability is m(m/n)L ≤ δ if L ≥ log(m/δ)/ log(n/m).
Note that the hash can contain millions of items and be at ∼ 80% capacity and still L ∼ 100.

5. Let us start with the expected running time of Add. Denote by `∗ = min`A[h`(x)] = 0. Clearly, the
running is O(`∗) since each lookup requires O(1) time.

E[`∗] =

L∑
`=1

`Pr[`∗ = `] ≤
∞∑
`=1

`(
m

n
)`−1(1− m

n
) = O(1)

This assumes the ratio between m and n is fixed. Regardless, this does not depend on L.

Now we argue the same about Query. If x has been added then Query(x) takes the same amount of
time that Add(x) did at the time of insertion. If x has not been added then Query returns False in the
same amount of time it would have taken to run Add(x). If both both cases it reduces the calculation
above.

8

