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Lecture 5: Random-projection
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do
not cite this note as a reliable source. If you find mistakes, please inform me.

We will give a simple proof of the following, rather amazing, fact. Every set of n points in a Euclidian
space (say in dimension d) can be embedded into the Euclidian space of dimension k = O(log(n)/e?) such
that all pairwise distances are preserved up distortion 1 +e. We will prove the construction of [1] which is
simpler than the one in [2].

Random projection

We will argue that a certain distribution over the choice of a matrix R € R**? gives that:
Vr e ST Pr|||—=Ral|—1] > | < = (1)
VEk ~ n?

Before we pick this distribution and show that Equation 1 holds for it, let us first see that this gives the
opening statement.

Consider a set of n points 1, . . ., x,, in Euclidian space R?. Embedding these points into a lower dimension
while preserving all distances between them up to distortion 14¢ means approximately preserving the norms
of all (Z) vectors x; — ;. Assuming Equation 1 holds and using the union bound, this property will fail to
hold for at least one x; — x; pair with probability at most (’zl)n—l2 < 1/2. Which means that all (Z) point
distances are preserved up to distortion e with probability at least 1/2.

1 Matrices with normally distributed independent entries

We consider the distribution of matrices R such that each R(i,j) is drawn independently from a normal
distribution with mean zero and variance 1, R(%, ) ~ N (0,1). We show that for this distribution Equation 1
holds for some k € O(log(n)/e?).

First consider the random variable z = Zj’:l r(j)z(j) where r(j) ~ N(0,1). To understand how the
variable z distributes we recall the two-stability of the normal distribution. Namely, if z3 = 25 + z; and

21 ~ N (p1,01) and zp ~ N (p2,02) then,

zg ~ N(p1 + p2, \/0f +03).

In our case, (i) (i) ~ N(0,z;) and therefore, z = 3¢ r(i)z(i) ~ N(0, /3%, 22) ~ N(0,1). Now, note
that each element in the vector Rz distributes exactly like z. Defining k identical copies of z, 21, ..., 2z, We

get that HﬁRxH distributes exactly like 4/ % Zle z2. Thus, proving Equation 1 reduces to showing that:




for a set of independent normal random variables z1,...,2; ~ AN (0,1). It is sufficient to demanding that
Pr[YF | 22 > k(1 4 €)?] and Pr[YF_, 22 < k(1 — £)?] are both smaller than 1/2n%. We start with bounding

K2

the probability that Zle 22 > k(1 +¢€) (this is okay because k(1 +¢) < k(1 + £)?).

Pr[z ZZZ > k(1 _|_€)} _ Pr[e)\zzf < eAk(1+e)} < (]E[exzz])k/ez\k(1+s)
Since z ~ N(0,1) we can compute E[e**’] exactly:
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E[e**'] = —/ AMemTdt = —/ e
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00 t/2
The final step is by substituting ' = ¢t4/1 — 2\ and recalling that \/% f_oo e~ 2 dt’ = 1. Finally, using the
fact that log(—55) < 2X +4A? for A € [0,1/4] we have:

t/T—2x)2
*(f)dt — e3log(1-2))

E[eAZZ] _ e 108(i75x) < A2V

V1—=2\
Substituting this into the equation above we have that:

Pr< ek()\+2/\2)—k)\(1+5) _ erAZ—k,\e _ e—k52/8

for A < ¢/4. Finally, our condition that

k
P} 22 > k(1 +e)] < e /8 < 1/2m2
=1

is achieved by k = clog(n)/e2. Calculating for Pr[Y.F | 22 < k(1 — ¢)] in the same manner shows that

P >
k = clog(n)/e? is also sufficient for this case. This completes the proof.
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