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Lecture 5: Random-projection
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Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

We will give a simple proof of the following, rather amazing, fact. Every set of n points in a Euclidian
space (say in dimension d) can be embedded into the Euclidian space of dimension k = O(log(n)/ε2) such
that all pairwise distances are preserved up distortion 1 ± ε. We will prove the construction of [1] which is
simpler than the one in [2].

Random projection

We will argue that a certain distribution over the choice of a matrix R ∈ Rk×d gives that:

∀x ∈ Sd−1 Pr
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Before we pick this distribution and show that Equation 1 holds for it, let us first see that this gives the
opening statement.

Consider a set of n points x1, . . . , xn in Euclidian space Rd. Embedding these points into a lower dimension
while preserving all distances between them up to distortion 1±ε means approximately preserving the norms
of all

(
n
2

)
vectors xi − xj . Assuming Equation 1 holds and using the union bound, this property will fail to

hold for at least one xi − xj pair with probability at most
(
n
2

)
1
n2 ≤ 1/2. Which means that all

(
n
2

)
point

distances are preserved up to distortion ε with probability at least 1/2.

1 Matrices with normally distributed independent entries

We consider the distribution of matrices R such that each R(i, j) is drawn independently from a normal
distribution with mean zero and variance 1, R(i, j) ∼ N (0, 1). We show that for this distribution Equation 1
holds for some k ∈ O(log(n)/ε2).

First consider the random variable z =
∑d
j=1 r(j)x(j) where r(j) ∼ N (0, 1). To understand how the

variable z distributes we recall the two-stability of the normal distribution. Namely, if z3 = z2 + z1 and
z1 ∼ N (µ1, σ1) and z2 ∼ N (µ2, σ2) then,

z3 ∼ N (µ1 + µ2,
√
σ2
1 + σ2

2).

In our case, r(i)x(i) ∼ N (0, xi) and therefore, z =
∑d
i=1 r(i)x(i) ∼ N (0,

√∑d
i=1 x

2
i ) ∼ N (0, 1). Now, note

that each element in the vector Rx distributes exactly like z. Defining k identical copies of z, z1, . . . , zk, We

get that || 1√
k
Rx|| distributes exactly like

√
1
k

∑k
i=1 z

2
i . Thus, proving Equation 1 reduces to showing that:
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for a set of independent normal random variables z1, . . . , zk ∼ N (0, 1). It is sufficient to demanding that

Pr[
∑k
i=1 z

2
i ≥ k(1 + ε)2] and Pr[

∑k
i=1 z

2
i ≤ k(1− ε)2] are both smaller than 1/2n2. We start with bounding

the probability that
∑k
i=1 z

2
i ≥ k(1 + ε) (this is okay because k(1 + ε) < k(1 + ε)2).

Pr[
∑

z2i ≥ k(1 + ε)] = Pr[eλ
∑
z2i ≤ eλk(1+ε)] ≤ (E[eλz

2

])k/eλk(1+ε)

Since z ∼ N (0, 1) we can compute E[eλz
2

] exactly:
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] =
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2π

∫ ∞
−∞

eλt
2

e−
t2

2 dt =
1√
2π

∫ ∞
−∞

e−
(t
√

1−2λ)2

2 dt = e
1
2 log(1−2λ)

The final step is by substituting t′ = t
√

1− 2λ and recalling that 1√
2π

∫∞
−∞ e−

t′2
2 dt′ = 1. Finally, using the

fact that log( 1
1−2λ ) ≤ 2λ+ 4λ2 for λ ∈ [0, 1/4] we have:

E[eλz
2

] =
1√

1− 2λ
= e

1
2 log( 1

1−2λ ) ≤ eλ+2λ2

Substituting this into the equation above we have that:

Pr ≤ ek(λ+2λ2)−kλ(1+ε) = e2kλ
2−kλε = e−kε

2/8

for λ← ε/4. Finally, our condition that

Pr[

k∑
i=1

z2i ≥ k(1 + ε)] ≤ e−kε
2/8 ≤ 1/2n2

is achieved by k = c log(n)/ε2. Calculating for Pr[
∑k
i=1 z

2
i ≤ k(1 − ε)] in the same manner shows that

k = c log(n)/ε2 is also sufficient for this case. This completes the proof.
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