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Lecture 6: Fast random projection
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

We discussed in class the fact that random projection matrices cannot be made sparse in general. That
is because projecting sparse vectors and preserving their norm requires the projecting matrix is almost fully
dense see also [1] and [2].

But, the question is, can we actively make sure that x is not sparse? If so, can we achieve a sparse
random projection for non sparse vectors? These two questions received a positive answer in the seminal
work by Ailon and Chazelle [3]. The results of [3] were improved and simplified over the years. See [4] for
the latest result and an overview.

In this lesson we will produce a very simple algorithm based on the ideas in [3]. This algorithm will
require a target dimension of O(log2(n)/ε2) instead of O(log(n)/ε2) but will be much simpler to prove.

0.1 Fast vector `4 norm reduction

The goal of this subsection is to devise a linear mapping which preserves vector’s `2 norms but reduces their
`4 norms with high probability. This will work to our advantage because, intuitively, vectors whose `4 norm
is small cannot be too sparse. For this we will need to learn what Hadamard matrices are.

Hadamard matrices are commonly used in coding theory and are conceptually close for Fourier matrices.
We assume for convenience that d is a power of 2 (otherwise we can pad out vectors with zeros). The Walsh
Hadamard transform of a vector x ∈ Rd is the result of the matrix-vector multiplication Hx where H is a
d × d matrix whose entries are H(i, j) = 1√

d
(−1)〈i,j〉. Here 〈i, j〉 means the dot product over F2 of the bit

representation of i and j as binary vectors of length log(d). Another way to view this is to define Hadamard
Matrices recursively.

H1 =
1√
2

(
1 1
1 −1

)
, Hd =

1√
2

(
Hd/2 Hd/2

Hd/2 −Hd/2

)
Here are a few interesting (and easy to show) facts about Hadamard matrices.

1. Hd is a unitary matrix ‖Hx‖ = ‖x‖ for any vector x ∈ Rd.

2. Computing x 7→ Hx requires O(d log(d)) operations.

We also define a diagonal matrix D to be such that D(i, i) ∈ {1,−1} uniformly. Clearly, we have
that ‖HDx‖2 = ‖x‖2 since both H and D are isotropies. Let us now bound ‖HDx‖∞. (HDx)(1) =∑d
i=1H(1, i)D(i, i)xi =

∑d
i=1

xi√
d
si where si ∈ {−1, 1} uniformly. To bound this we recap Hoeffding’s

inequality.

Fact 0.1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables s.t. Xi ∈ [ai, bi]. Let
X =

∑n
i=1Xi.

Pr[|X − E[X]| ≥ t] ≤ 2e
− 2t2∑n

i=1
(bi−ai)2 (1)

Invoking Hoeffding’s inequality and then the union bound we get that if ‖HDx‖∞ ≤
√

c log(n)
d for all

points x. Remark, for this we assumed log(d) = O(log(n)) otherwise we should have had log(nd) in the
bound. The situation, however, that the dimension is super polynomial in the number of points is unlikely.
Usually it is common to have n > d.
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Lemma 0.1. Let x ∈ Rd by such that ‖x‖ = 1. Then:

‖HDx‖44 = O(log(n)/d)

with probability at least 1− 1/poly(n)

Proof. Let us define y = HDx and zi = y2i . From the above we have that zi ≤ c log(n)
d = η with probability

at least 1− 1/poly(n). The quantity ‖HDx‖44 = ‖y‖44 =
∑
i z

2
i is a convex function of the z variables which

is defined over a polytop zi ∈ [0, 1] and
∑
i zi = 1 (this is because ‖y‖22 = 1). This means that its maximal

value is obtained on an extreme point of this polytope. In other words, the point z1, . . . , z1/η = η and
z1/η+1, . . . , zd = 0 or z = [η, η, . . . , η, η, 0, 0, 0, . . . , 0, 0, 0]. Computing the value of the function in this point

gives
∑
i z

2
i ≤ (1/η) · (η2) = η. Recalling the η = c log(n)

d completes the proof.

0.2 Sampling from vectors with low `4 norms

Here we prove a very simple fact. For vectors whose `4 is low, dimensionally reduction can be obtained by
sampling.

Let y be a vector such that ‖y‖2 = 1. Let z be a sampled version of y such that zi = yi/
√
p with

probability p and 0 else. This is akin to sampling, in expectation, d · p coordinates from y (and scaling them
up by 1/

√
p). Note the E[‖z‖2] = E[‖y‖2] = 1 moreover:

Pr[|‖z‖2 − 1| > ε] = Pr[|
∑

z2i − 1| > ε] = Pr[|
∑

biy
2
i /p− 1| > ε]

Where bi are independent random indicator variables taking the bi = 1 with probability p and bi = 0 else.
To apply chernoff’s bound we must assert that y2i /p ≤ 1. Let’s assume this for now and return to it later.
Applying Chernoff’s bound we get

Pr[|
∑

biy
2
i /p− 1| > ε] ≤ e−

cε2

σ2

where σ2 =
∑
i E[(biy

2
i /p)

2] = ‖y‖44/p. Concluding that

Pr[|‖z‖2 − 1| > ε] ≤ e
− cpε2

‖y‖44

This shows that the concentration of the sampling procedure really depends directly on the `4 norm of the
sampled vector. If we plug in the bound on ‖y‖44 = ‖HDx‖44 from the previous section we get

Pr[|‖z‖2 − 1| > ε] ≤ e−
cpεd
log(n) ≤ 1

poly(n)

For some p ∈ O(log2(n)/dε2).

0.3 Random Projection by Sampling

Putting it all together we obtain the following.

Lemma 0.2. Define the following matrices

• D: A diagonal matrix such that Di,i ∈ {+1,−1} uniformly.

• H: The d× d Walsh Hadamard Transform matrix.

• P : A ‘sampling matrix’ which contains each row of matrix Id ·
√
p with probability p = c log2(n)/dε2.

Then, with at least constant probability the following holds.
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1. The target dimension of the mapping is k = c log2(n)/ε2 (a factor log(n) worse than optimal).

2. The mapping x 7→ PHDx is a (1± ε)-distortion mapping for any set of n points. That is, for any set
x1, . . . , xn ∈ Rd we have

‖xi − xj‖(1− ε) ≤ ‖PHDxi − PHDxj‖ ≤ ‖xi − xj‖(1 + ε)

3. Storing PHD requires at most O(d+ k log(d)) space.

4. Applying the mapping x 7→ PHDx requires at most d log(d) floating point operations.
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