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Lecture 7: Singular Value Decomposition
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

We will see that any matrix A ∈ Rm×n (w.l.o.g. m ≤ n) can be written as

A =

m∑
`=1

σ`u`v
T
` (1)

∀ ` σ` ∈ R, σ` ≥ 0 (2)

∀ `, `′ 〈u`, u`′〉 = 〈v`, v`′〉 = δ(`, `′) (3)

To prove this consider the matrix AAT ∈ Rm×m. Set u` to be the `’th eigenvector of AAT . By definition
we have that AATu` = λ`u`. Since AAT is positive semidefinite we have λ` ≥ 0. Since AAT is symmetric
we have that ∀ `, `′ 〈u`, u`′〉 = δ(`, `′). Set σ` =

√
λ` and v` = 1

σ`
ATu`. Now we can compute the following:

〈v`, v`′〉 =
1

σ2
`

uT` AA
Tu` =

1

σ2
`

λ`〈u`, u`′〉 = δ(`, `′)

We are only left to show that A =
∑m
`=1 σ`u`v

T
` . To do that we examine the norm or the difference multiplied

by a test vector w =
∑m
i=1 αiui.

||wT (A−
m∑
`=1

σ`u`v
T
` )|| = ||(

m∑
i=1

αiu
T
i )(A−

m∑
`=1

σ`u`v
T
` )||

= ||(
m∑
i=1

αiu
T
i A−

m∑
i=1

m∑
`=1

δ(i, `)αiσ`v
T
` ||

= ||(
m∑
i=1

αiσiv
T
i −

m∑
i=1

αiσiv
T
i || = 0

The vectors u` and v` are called the left and right singular vectors of A and σ` are the singular vectors of A.
It is costumery to order the singular values in descending order σ1 ≥ σ2, . . . , σm ≥ 0. Also, we will denote
by r the rank of A. Here is another very convenient way to write the fact that A =

∑m
`=1 σ`u`v

T
`

• Let Σ ∈ Rr×r be a diagonal matrix whose entries are Σ(i, i) = σi and σ1 ≥ σ2 ≥ . . . ≥ σr.

• Let U ∈ Rm×r be the matrix whose i’th column is the left singular vectors of A corresponding to
singular value σi.

• Let V ∈ Rn×r be the matrix whose i’th column is the right singular vectors of A corresponding to
singular value σi.

We have that A = USV T and that UTU = V TV = Ir. Note that the sum goes only up to r which is the
rank of A. Clearly, not summing up zero valued singular values does not change the sum.
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Applications of the SVD

1. Determining range, null space and rank (also numerical rank).

2. Matrix approximation.

3. Inverse and Pseudo-inverse: If A = UΣV T and Σ is full rank, then A−1 = V Σ−1UT . If Σ is singular,
then its pseudo-inverse is given by A† = V Σ†UT , where Σ† is formed by replacing every nonzero entry
by its reciprocal.

4. Least squares: If we need to solve Ax = b in the least-squares sense, then xLS = V Σ†UT b.

5. Denoising – Small singular values typically correspond to noise. Take the matrix whose columns are
the signals, compute SVD, zero small singular values, and reconstruct.

6. Compression – We have signals as the columns of the matrix S, that is, the i signal is given by

Si =

r∑
i=1

(σjvij)uj .

If some of the σi are small, we can discard them with small error, thus obtaining a compressed repre-
sentation of each signal. We have to keep the coefficients σjvij for each signal and the dictionary, that
is, the vectors ui that correspond to the retained coefficients.

SVD and eigen-decomposition are related but there are quite a few differences between them.

1. Not every matrix has an eigen-decomposition (not even any square matrix). Any matrix (even rectan-
gular) has an SVD.

2. In eigen-decomposition A = XΛX−1, that is, the eigen-basis is not always orthogonal. The basis of
singular vectors is always orthogonal.

3. In SVD we have two singular-spaces (right and left).

4. Computing the SVD of a matrix is more numerically stable.

Rank-k approximation in the spectral norm

The following will claim that the best approximation to A by a rank deficient matrix is obtained by the top
singular values and vectors of A. More accurately:

Fact 0.1. Set

Ak =

k∑
j=1

σjujv
T
j .

Then,
min

B∈Rm×n

rank(B)≤k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.

Proof.

‖A−Ak‖ = ‖
r∑
j=1

σjujv
T
j −

k∑
j=1

σjujv
T
j ‖ = ‖

r∑
j=k+1

σjujv
T
j ‖ = σk+1

and thus σk+1 is the largest singular value ofA−Ak. Alternatively, look at UTAkV = diag(σ1, . . . , σk, 0, . . . , 0),
which means that rank(Ak) = k, and that

‖A−Ak‖2 = ‖UT (A−Ak)V ‖2 = ‖ diag(0, . . . , 0, σk+1, . . . , σr)‖2 = σk+1.
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Let B be an arbitrary matrix with rank(Bk) = k. Then, it has a null space of dimension n− k, that is,

null(B) = span(w1, . . . , wn−k).

A dimension argument shows that

span(w1, . . . , wn−k) ∩ span(v1, . . . , vk+1) 6= {0}.

Let w be a unit vector from the intersection. Since

Aw =

k+1∑
j=1

σj(v
T
j w)uj ,

we have

‖A−B‖22 ≥ ‖(A−B)w‖22 = ‖Aw‖22 =

k+1∑
j=1

σ2
j

∣∣vTj w∣∣2 ≥ σ2
k+1

k+1∑
j=1

∣∣vTj w∣∣2 = σ2
k+1,

since w ∈ span{v1, . . . , vn+1}, and the vj are orthogonal.

Rank-k approximation in the Frobenius norm

The same theorem holds with the Frobenius norm.

Theorem 0.1. Set

Ak =

k∑
j=1

σjujv
T
j .

Then,

min
B∈Rm×n

rank(B)≤k

‖A−B‖F = ‖A−Ak‖F =

√√√√ m∑
i=k+1

σ2
i .

Proof. Suppose A = UΣV T . Then

min
rank(B)≤k

‖A−B‖2F = min
rank(B)≤k

‖UΣV T − UUTBV V T ‖2F = min
rank(B)≤k

‖Σ− UTBV ‖2F .

Now,

‖Σ− UTBV ‖2F =
n∑
i=1

(
Σii −

(
UTBV )ii

))2
+ off-diagonal terms.

If B is the best approximation matrix and UTBV is not diagonal, then write UTBV = D + O, where D is
diagonal and O contains the off-diagonal elements. Then the matrix B = UDV T is a better approximation,
which is a contradiction.

Thus, UTBV must be diagonal. Hence,

‖Σ−D‖2F =

n∑
i=1

(σi − di)2
=

k∑
i=1

(σi − di)2
+

n∑
i=k+1

σ2
i ,

and this is minimal when di = σi, i = 1, . . . , k. The best approximating matrix is Ak = UDV T , and the

approximation error is
√∑n

i=k+1 σ
2
i .
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Data mining applications of the SVD

Linear regression in the least-squared loss

In Linear regression we aim to find the best linear approximation to a set of observed data. For the m data
points {x1, . . . , xm}, xi ∈ Rn, each receiving the value yi, we look for the weight vector w that minimizes:

n∑
i=1

(xTi w − yi)2 = ‖Aw − y‖22

Where A is a matrix that holds the data points as rows Ai = xTi .

Proposition 0.1. The vector w that minimizes ‖Aw − y‖22 is w = A†y = V Σ†UT y for A = UΣV T and

Σ†ii = 1/Σii if Σii > 0 and 0 else.

Let us define U‖ and U⊥ as the parts of U corresponding to positive and zero singular values of A
respectively. Also let y‖ = 0 and y⊥ be two vectors such that y = y‖ + y⊥ and U‖y⊥ = 0 and U⊥y‖ = 0.

Since y‖ and y⊥ are orthogonal we have that ‖Aw−y‖22 = ‖Aw−y‖−y⊥‖22 = ‖Aw−y‖‖22 +‖y⊥‖22. Now,

since y‖ is in the range of A there is a solution w for which ‖Aw − y‖‖22 = 0. Namely, w = A†y = V Σ†UT y

for A = UΣV T . This is because UΣV TV Σ†UT y = y‖. Moreover, we get that the minimal cost is exactly
‖y⊥‖22 which is independent of w.

PCA, Optimal squared loss dimension reduction

Given a set of n vectors x1, . . . , xn in Rm. We look for a rank k projection matrix P ∈ Rm×m that minimizes:∑
i=1

||Pxi − xi||22

If we denote by A the matrix whose i’th column is xi then this is equivalent to minimizing ||PA−A||2F Since

the best possible rank k approximation to the matrix A is Ak =
∑k
i=1 σiuiv

T
i the best possible solution would

be a projection P for which PA = Ak. This is achieved by P = UkU
T
k where Uk is the matrix corresponding

to the first k left singular vectors of A.
If we define yi = UTk xi we see that the values of yi ∈ Rk are optimally fitted to the set of points xi in

the sense that they minimize:

min
y1,...,yn

min
Ψ∈Rk×m

∑
i=1

||Ψyi − xi||22

The mapping of xi → UTk xi = yi thus reduces the dimension of any set of points x1, . . . , xn in Rm to a set
of points y1, . . . , yn in Rk optimally in the squared loss sense. This is commonly referred to as Principal
Component Analysis (PCA).

Closest orthogonal matrix

The SVD also allows to find the orthogonal matrix that is closest to a given matrix. Again, suppose that
A = UΣV T and W is an orthogonal matrix that minimizes ‖A−W‖2F among all orthogonal matrices. Now,

‖UΣV T −W‖2F = ‖UΣV T − UUTWV V T ‖ = ‖Σ− W̃‖,

where W̃ = UTWV is another orthogonal matrix. We need to find the orthogonal matrix W̃ that is closest
to Σ. Alternatively, we need to minimize ‖W̃TΣ− I‖2F .
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If U is orthogonal and D is diagonal and positive, then

trace(UD) =
∑
i,k

uikdki ≤
∑
i

(∑
k

u2
ik

)1/2(∑
k

d2
ik

)1/2


=
∑
i

(∑
k

d2
ki

)1/2

=
∑
i

(
d2
ii

)1/2
=
∑
i

dii = trace(D).

(4)

Now

‖W̃TΣ− I‖2F = trace

((
W̃TΣ− I

)(
W̃TΣ− I

)T)
= trace

((
W̃TΣ− I

)(
ΣW̃ − I

))
= trace

(
W̃TΣ2W̃

)
− trace

(
W̃TΣ

)
− trace

(
ΣW̃

)
+ n

= trace

((
ΣW̃

)T (
ΣW̃

))
− 2 trace

(
ΣW̃

)
+ n

= ‖ΣW̃‖2F − 2 trace
(

ΣW̃
)

+ n

= ‖Σ‖2F − 2 trace
(

ΣW̃
)

+ n.

Thus, we need to maximize trace
(

ΣW̃
)

. But this is maximized by W̃ = I by (4). Thus, the best approxi-

mating matrix is W = UV T .

Computing the SVD: The power method

We give a simple algorithm for computing the Singular Value Decomposition of a matrix A ∈ Rm×n. We
start by computing the first singular value σ1 and left and right singular vectors u1 and v1 of A, for which
mini<j log(σi/σj) ≥ λ:

1. Generate x0 such that x0(i) ∼ N (0, 1).

2. s← log(4 log(2n/δ)/εδ)/2λ

3. for i in [1, . . . , s]:

4. xi ← ATAxi−1

5. v1 ← xi/‖xi‖

6. σ1 ← ‖Av1‖

7. u1 ← Av1/σ1

8. return (σ1, u1, v1)

Let us prove the correctness of this algorithm. First, write each vector xi as a linear combination of the right
singular values of A i.e. xi =

∑
j α

i
jvj . From the fact that vj are the eigenvectors of ATA corresponding to

eigenvalues σ2
j we get that αij = αi−1

j σ2
j . Thus, αsj = α0

jσ
2s
j . Looking at the ratio between the coefficients of

v1 and vi for xs we get that:

| < xs, v1 > |
| < xs, vi > |

=
|α0

1|
|α0
i |

(
σ1

σi

)2s
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Demanding that the error in the estimation of σ1 is less than ε gives the requirement on s.

|α0
1|
|α0
i |

(
σ1

σi

)2s

≥ n

ε
(5)

s ≥ log(n|α0
i |/ε|α0|1)

2 log(σ1/σi)
(6)

From the two-stability of the gaussian distribution we have that α0
i ∼ N (0, 1). Therefore, Pr[α0

i > t] ≤ e−t2

which gives that with probability at least 1−δ/2 we have for all i, |α0
i | ≤

√
log(2n/δ). Also, Pr[|α0

1| ≤ δ/4] ≤
δ/2 (this is because Pr[|z| < t] ≤ maxrΨz(r) ·2t for any distribution and the normal distribution function at
zero takes it maximal value which is less than 2) Thus, with probability at least 1− δ we have that for all i,
|α0

1|
|α0

i |
≤
√

log(2n/δ)

δ/4 . Combining all of the above we get that it is sufficient to set s = log(4n log(2n/δ)/εδ)/2λ =

O(log(n/εδ)/λ) in order to get ε precision with probability at least 1− δ.
We now describe how to extend this to a full SVD of A. Since we have computed (σ1, u1, v1), we can

repeat this procedure for A − σ1u1v
T
1 =

∑n
i=2 σiuiv

T
i . The top singular value and vectors of which are

(σ2, u2, v2). Thus, computing the rank-k approximation of A requires O(mnks) = O(mnk log(n/εδ))/λ)
operations. This is because computing ATAx requires O(mn) operations and for each of the first k singular
values and vectors this is performed s times.

The main problem with this algorithm is that its running time is heavily influenced by the value of λ.
Other variants of this algorithm are much less sensitive to the value of this parameter, but are out of the
scope of this class.
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