
0368-3248-01-Algorithms in Data Mining Fall 2013

Lecture 8: Home Assignment, Due Dec 31st
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

1 Randomized meta-algorithms

setup

In this question we assume the common case where we have an input x ∈ X and we wish to approximate a
function f : X → R+ (i.e. ∀x f(x) ≥ 0). For that we have a black box randomized algorithm A : X → R+

such that E[A(x)] = f(x). The questions ask you to designing meta algorithms using A as a black box.

question

1. Show that

Pr[A(x) ≥ 3f(x)] ≤ 1

3

2. Assume that for all x we have that Var[A(x)] ≤ c · [f(x)]2. Describe an algorithm B2 such that for any
two constants ε, δ > 0:

Pr[|B2(x)− f(x)| ≥ εf(x)] ≤ δ

3. Assume that Pr[|A(x)−f(x)| ≤ t|] ≥ 1
2 +η for some fixed value η > 0. In words, the algorithm gets an

additive approximation t with probability slightly better than 1/2. (Here we do not assume anything
on the variance of A(x)). Design and algorithm B3 such that for any prescribed δ > 0

Pr[|B3(x)− f(x)| ≤ t|] ≥ 1− δ

That means the algorithm achieves the same additive approximation with probability arbitrary close
to one.
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2 Set intersections

setup

We have a universe of N items A = {a1, . . . , aN} and m subsets Si ⊂ A, i ∈ {1, . . . ,m}. We assume that
given a set Si we can iterate over its elements one by one. The exercise will deal with approximating the
size of different unions of these sets. Here you are tasked with designing an algorithm. Your algorithm is
allowed to preprocess the sets S in and produce data structures (preprocess(S)) It should then be able to
take as input a set of indexed I ⊂ {1, . . . ,m} and produce an ε approximation to | ∪i∈I Si| with probability
at least 1 − δ (estimateUnionSize(I)). The aim is to create an algorithm which runs in time o(

∑
i∈I |Si|)

and requires o(| ∪i∈I Si|) space. That means that simply iterating through the lists and keeping items in a
hash lookup table is not an adequate solution.

1. Describe preprocess(S) which is the preparatory stage of the algorithm and results in our choice of
data structures.

2. Describe estimateUnionSize(I) which return an ε approximation to | ∪i∈I Si| with probability 1− δ.

3. Prove your algorithm’s correctness.

4. What is the space usage of your data structures?

5. What is the runtime complexity of estimateUnionSize(I)?
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3 Weak random projections

setup

In this question we will construct a simple and weak proof of the Johnson-Lindenstrauss lemma. Given two
vectors x, y ∈ Rd we will find two new vectors x′, y′ ∈ Rk such that from x′ and y′ we could approximate
the value of ||x− y||. The idea is to define k vectors ri ∈ Rd such that each ri(j) takes a value in {+1,−1}
uniformly at random. Setting x′(i) = rTi x and y′(i) = rTi y the questions will lead you through arguing that
1
k ||x

′ − y′||22 ≈ ||x− y||22.

questions

1. Let z = x− y, and z′ = x′ − y′. Show that z′(`) = rT` z for any index ` ∈ [1, . . . , k].

2. Show that E[ 1k ||z
′||22] = E[(z′(`))2] = ||z||22.

3. Show that
Var[(z′(`))2] ≤ 4||z||42.

Hint: for any vector w we have ||w||4 ≤ ||w||2.

4. From 3 (even if you did not manage to show it) claim that

Var[
1

k
||z′||22] ≤ 4||z||42/k.

5. Use 3 and Chebyshev’s inequality do obtain a value for k for which:

(1− ε)||x− y||22 ≤
1

k
||x′ − y′||22 ≤ (1 + ε)||x− y||22

with probability at least 1− δ.
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4 SVD and the power method

setup

Here we will prove some basic facts about singular values, matrices, and the power method. For the reminder
of the question we assume A ∈ Rm×n is an arbitrary matrix. For convenience and w.l.o.g. assume m ≤ n
and denote by σ1 ≥ . . . σm ≥ 0 the singular values of A. Define the numeric rank of a matrix ρ(A) to be
ρ(A) = ‖A‖2fro/‖A‖22. ρ(A) is a smoothed version of the algebraic rank rank(A). It is always true that
1 ≤ ρ(A) ≤ Rank(A) ≤ min(m,n). If ρ(A) ≤ 1 + ε for a sufficiently small ε the matrix is “close” to being
of rank 1.

question

1. Let P ∈ Rm×m and Q ∈ Rn×n be unitary matrices. Show that ‖PAQ‖fro = ‖A‖fro. Hint, begin with
the case where one of the matrices P or Q are the identity matrix.

2. Using the above show that for any matrix A we have that

‖A‖fro =

√√√√ m∑
i=1

σ2
i .

It might help you to show that ‖A‖2fro = tr(AAT ) where tr(·) stands for the matrix trace.

3. Give an expression to the numeric rank of A only in terms of its singular values σi.

4. Express the numerical rank of (AAT )kA only in terms of σi.

5. Assume that the matrix A is such that σ2/σ1 ≤ η for some η < 1. Use your expressions from above to
find k such that ρ((AAT )kA)) ≤ 1 + ε. How does this relate to the the Power Method for computing
the largest singular value and vectors of A?
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