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Lecture 8: Matrix sampling and rank-k approximation
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

In this lesson we will try to approximate a matrix A by a sparser matrix B. Clearly , B will be easier to
store and more computationally efficient when applied as an operator. Before we begin thought, let us see
how such an approximation allows us to compute an approximate PCA for A.

Remember that the best approximation of A of rank k is Ak = PkA where Pk is the projection on the
top k singular values of A.

min
rank(A′)=k

‖A−A′‖ = ‖A−Ak‖ = ‖A− PkA‖ = σk+1

where σk+1 is the (k + 1)’th largest singular value of A. Now, assume we are given a matrix B such that
‖A − B‖ ≤ ε‖A‖ for some small enough ε. If we compute the PCA of B and look at the projection on its
top k singular values PB

k , what can we say about ‖A− PB
k A‖ ? To compute ‖A− PB

k A‖ we multiply it by
a test vector from the left x.

‖A− PB
k A‖ ≤ sup

x
‖xA− xPB

k A‖ (1)

= sup
x∈null(PBk )

‖xA− xPB
k A‖ (2)

= sup
x∈null(PBk )

‖xA‖ (3)

≤ sup
x∈null(PBk )

‖xA− xB‖+ ‖xB‖ (4)

≤ ‖A−B‖+ σB
k+1 (5)

≤ σk+1 + 2ε‖A‖2 (6)

The last line stems from the fact that σB
k+1 ≤ σk+1 +‖A−B‖. What we conclude is that the PCA computed

for B is a good approximation to the actual PCA of A in the sense that

‖A− PB
k A‖ = σk+1 + 2ε‖A‖2

Element-wise sampling

In this section we will argue that it is sufficient to sample single entries from a matrix to approximate it.
There is a very simple proof of for this fact [1] but we will follow a slightly more involved one which gives
better results [2].

In this section we will denote by ai,j the value of entry (i, j) in the matrix A. We will denote by Ai,j the
m×n matrix whose entries are all zeros except entry (i, j) which is set to ai,j . In other words, A =

∑
i,j Ai,j .

Given A our goal is to produce another matrix B such that ‖A − B‖ is small and that B is much sparser
than A.

Let us define the B to take the value Ai,j/pi,j with probability pi,j .

E[B] =
∑
i,j

pi,j(Ai,j/pi,j) =
∑
i,j

Ai,j = A
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Of course, we cannot hope to approximate A with a matrix with only 1 non zero. We therefore average s
such variables

B =
1

s

s∑
k=1

Bk

We still have that E[B] = A but now we can use matrix-chernoff bounds to argue about ‖A−B‖.

Lemma 0.1 (Matrix Bernstein Inequality [3]). Let X1, . . . , Xs be independent m×n matrix valued random
variables such that

∀k∈[s] E[Xk] = 0 and ‖Xk‖ ≤ R

Set σ2 = max{‖
∑

k E[XkX
T
k ]‖, ‖

∑
k E[XT

k Xk]‖} then

Pr[‖
∑

Xk‖ > t] ≤ (m+ n)e
− t2

σ2+Rt/3

To use the lemma we convert ‖A−B‖ to a sum of mean zero matrices

‖A−B‖ = ‖1

s

s∑
k=1

Bk −A‖ = ‖
s∑

k=1

(Bk −A)/s‖

Since E[Bk] = A we can set Xk = (Bk −A)/s and satisfy E[Xk] = 0. Now, to compute R and σ2 we need to
set pi,j . It makes sense to sample larger elements in the matrix with higher probability. But, there is a large
number of ways to do that, see for example references inside [2]. For the sake of this class we’ll pick a simple
distribution which will make our derivation easier. We set pi,j = |ai,j |/|A|1 where |A|1 =

∑
i,j |ai,j |. Clearly

p is a valid distribution since
∑

i,j pi,j =
∑

i,j ai,j/|A|1 = 1. Let’s start with computing R = maxk ‖Xk‖

max
k
‖Xk‖ = max ‖(Ai,j/pi,j −A)/s‖ ≤ |A|1/s+ ‖A‖2/s

To compute σ2 we start by computing ‖
∑

k E[XkX
T
k ]‖:

‖
∑
k

E[(Bk−A)(Bk−A)T /s2]‖ = ‖E[(Bk−A)(Bk−A)T /s]‖ = ‖E[BkB
T
k ]−AAT ‖/s ≤ ‖E[BkB

T
k ]‖/s+‖A‖22/s.

To compute E[BkB
T
k ] we recall that Bk contains only one non zero. Bk = Ai,j/pi,j w.p. pi,j = ai,j/|A|1.

Therefore, BkB
T
k also contains only one entry but on the diagonal. Namely with probability ai,j/|A|1 we

have that
BkB

T
k = Ai,jA

T
i,j/p

2
i,j = |A|21ei,i

Where ei,i is a matrix holding the value 1 in position (i, i) and zero everywhere else. By remembering that
the norm of a diagonal matrix is the maximal value on its diagonal we can compute the expectation

‖E[BkB
T
k ]‖ = ‖

∑
i,j

(|ai,j |/|A|1)|A|21ei,i‖ = |A|1‖
∑
i,j

|ai,j |ei,i‖ = |A|1 max
i

∑
j

|ai,j | = |A|1ρ

Here we define ρ = maxi

∑
j |ai,j | to be the maximal `1 norm of a row in A. Putting this all together we get:

Pr[‖A−B‖ > t] ≤ (m+ n)e
− st2

|A|1ρ+‖A‖22+|A|1t/3+‖A‖2t/3

Setting t = ε‖A‖2, and demanding a failure probability of at most δ we get:

s ≥ log((m+ n)/δ)

ε2

(
|A|1ρ
‖A‖22

+ 1 +
ε|A|1
3‖A‖2

+
ε

3

)
It is hard to immediately see what this means since we need to quantify ‖A‖1 and ρ and their relation

to ‖A‖2. As an example, let us consider a matrix A which contains S non zero values and ai,j ∈ {1, 0,−1}.
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For such matrices |A|1 = S = ‖A‖2f =
√
S‖A‖f . Moreover, we recall that the numerical rank of A is defined

as ‖A‖2f/‖A‖22. The above reduces to the following

s ≥ log((m+ n)/δ)

ε2

(
rρ+ ε

√
Sr +O(1)

)
Moreover, assuming n ≥ m we have that both ρ < n and and

√
S ≤ n. So, this could be reduced even

further to

s ≥ O
(
nr log(n/δ)

ε2

)
Note that this is does not depended on the number of rows m!

References

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. A fast random sampling algorithm for sparsifying matri-
ces. In Proceedings of the 9th international conference on Approximation Algorithms for Combinatorial
Optimization Problems, and 10th international conference on Randomization and Computation, AP-
PROX’06/RANDOM’06, pages 272–279, Berlin, Heidelberg, 2006. Springer-Verlag.

[2] Petros Drineas and Anastasios Zouzias. A note on element-wise matrix sparsification via matrix-valued
chernoff bounds. CoRR, abs/1006.0407, 2010.

[3] Emmanuel Candès and Benjamin Recht. Exact matrix completion via convex optimization. Commun.
ACM, 55(6):111–119, June 2012.

3


