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Lecture 9: Matrix approximation continued
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

Recap

Last class was dedicated to approximating matrices by sampling individual entries from them. We used the
following useful concentration result for sums of random matrices.

Lemma 0.1 (Matrix Bernstein Inequality [1]). Let X1, . . . , Xs be independent m×n matrix valued random
variables such that

∀k∈[s] E[Xk] = 0 and ‖Xk‖ ≤ R
Set σ2 = max{‖

∑
k E[XkX

T
k ]‖, ‖

∑
k E[XT

k Xk]‖} then

Pr[‖
∑

Xk‖ > t] ≤ (m+ n)e
− t2

σ2+Rt/3

We obtained an approximate sampled matrix B which was sparser than A. For example, for a matrix A
containing values in {1, 0,−1} it sufficed that B contains only s entries and

s ∈ O
(
nr log(n/δ)

ε2

)
.

Moreover, we got that ‖A − B‖ ≤ ε‖A‖. We also claimed that we can compute the PCA projection of B,
PB
k instead of that of A, Pk and still have:

σk+1 = ‖A− PkA‖ ≤ ‖A− PB
k A‖ ≤ σk+1 + ε‖A‖

In this class we will reduce the amount of space needed to be independent of n. We will do this by approx-
imating AAT directly. Here we follow the ideas in [2] and give a much simpler proof which, unfortunately,
obtains slightly worse bounds.

PCA with an approximate covariance matrix

Here we see that approximating BBT ∼ AAT is sufficient in order to compute an approximate PCA projec-
tion (Lemma 3.8 in [2]). Let PB

k denote the projection on the top k left singular values of B.

‖A− PB
k A‖2 ≤ sup

x,‖x‖=1

‖xA− xPB
k A‖2 (1)

= sup
x∈null(PBk ),‖x‖=1

‖xA‖2 (2)

= sup
x∈null(PBk ),‖x‖=1

‖xAAT ‖ (3)

≤ sup
x∈null(PBk ),‖x‖=1

‖x(AAT −BBT )‖+ ‖xBBT ‖2 (4)

≤ ‖AAT −BBT ‖+ σk+1(BBT ) (5)

≤ 2‖AAT −BBT ‖+ σk+1(AAT ) (6)
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The last transition is due to the fact that σk+1(BB2) ≤ σk+1(AAT ) + ‖AAT −BBT ‖. By taking the square
root and recalling that σk+1(AAT ) = σ2

k+1(A)=̇σ2
k+1 we get:

‖A− PB
k A‖ ≤

√
σ2
k+1 + 2‖AAT −BBT ‖ ≤ σk+1 +

√
2‖AAT −BBT ‖

Therefore, we have that√
2‖AAT −BBT ‖ ≤ ε‖A‖ =⇒ ‖A− PB

k A‖ ≤ σk+1 + ε‖A‖

Column subset selection by sampling

From this point on, our goal is to find a matrix B such that ‖AAT − BBT ‖ is small and B is as sparse or
small as possible. Note that

AAT =

n∑
j=1

AjA
2
j

where we denote by Aj the j’th column of the matrix A. Let

B ← Aj/
√
pj with probability pj

Computing the expectation of BBT we have

E[BBT ] =

n∑
j=1

pj(Aj/
√
pj)(Aj/

√
pj)

T =

n∑
j=1

AjA
T
j = AAT

Clearly, we cannot hope to approximate the matrix A with only one column. We therefore define B to be s
such sampled columns from A side by side.

B =
1√
s

[B1| . . . |Bs]

Just to clarify, B is an m × s matrix containing s columns from A (rescaled) and Bk ← Aj/
√
pj with

probability pj . Computing the expectation of BBT we get that

E[BBT ] =

s∑
k=1

E[
1

s
BkB

T
k ] = E[BkB

T
k ] = AAT

We are now ready to use the matrix Bernstein inequality above:

‖BBT −AAT ‖ = ‖
s∑

k=1

1

s
(BkB

T
k −AAT )‖ = ‖

s∑
k=1

Xk‖

To make things simpler we pick pj = ‖Aj‖2/‖A‖2F . In words, the columns are picked with probability
proportional to their squared 2 norm.

R = max ‖Xk‖ ≤
n

max
j=1
‖1

s
AjA

T
j /pj‖+ ‖1

s
AAt‖ =

1

s
‖A‖2F +

1

s
‖A‖22

σ2 = ‖
∑
k

E[XkX
T
k ]‖ =

1

s
‖E[BkB

T
k BkB

T
k −AATAAT ]‖ (7)

≤ 1

s
‖

n∑
j=1

pjAjA
T
j AjA

T
j /p

2
j‖+

1

s
‖A‖42 =

1

s
‖A‖2F ‖A‖22 +

1

s
‖A‖42 (8)
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Plugging both expressions into the matrix Chernoff bound above we get that

Pr[‖BBT −AAT ‖ > ε2‖A‖22/2] ≤ 2me
− sε4‖A‖42/4

‖A‖2
F

‖A‖22+‖A‖42+ε2‖A‖22‖A‖2
F
/3+ε2‖A‖42/3

By using that ‖A‖F ≥ ‖A‖2 and that ε ≤ 1 and denoting the numeric rank of A by r = ‖A‖2F /‖A‖22 we can
simplify this to be

Pr[‖BBT −AAT ‖ > ε2‖A‖22/2] ≤ 2me−
sε4

16r

To conclude, it is enough to sample

s ≥ 16r

ε4
log(2m/δ)

columns from A (with probability proportional to their squared 2 norm) to form a matrix B such that
‖BBT − AAT ‖ ≤ ε2‖A‖22/2 with probability at least 1 − δ. According to above this also gives us that
‖A− PB

k A‖ ≤ σk+1 + ε‖A‖ which completes our claim. Note that the number of non zeros in B is bounded
by s ·m which is independent of n, the number of columns. This is potentially significantly better than the
results obtained in last week’s class.

Remark 0.1. More elaborate column selection algorithms exist which provide better approximation but these
will not be discussed here. See [3] for the latest result that I am aware of.

Deterministic Lossy SVD

I this section we will see that the above approximation can be improved using a simple trick [4]. The
algorithm keeps an m× s sketch matrix B which is updated every time a new column from the input matrix
A is added. It maintains the invariant that the last column in the sketch is always zero. When a new input
row is added it is places in the last (all zeros) column of the sketch. Then, using its SV D the sketch is rotated
from the right so that its columns are orthogonal. Finally, the sketch column norms are ‘shrunk’ so that
the last column is again all zeros. In the algorithm we denote by [U,Σ, V ] ← SV D(B) the Singular Value
Decomposition of B. We use the convention that UΣV T = B, UTU = V TV = I, and Σ = diag([σ1, . . . , σs]),
σ1 ≥ . . . ≥ σs. The notation I stands for the s × s identity matrix while Bs denotes the s’th column of B
(similarly Aj).

Input: s, A ∈ Rm×n

B0 ← all zeros matrix ∈ Rm×s

for i ∈ [n] do
Ci = Bi−1

Ci
s = Ai Put Ai in the last (all zeros) column of Ci

[U i,Σi, V i]← SV D(Ci)
Di ← U iΣi

δi ← Σi
s,s

W i ←
√
I − Σ−2δ2i

Bi ← DiW i

end for
Return: B ← Bn

Lemma 0.2. Let B be the output of the above algorithm for a matrix A and an integer s then:

‖AAT −BBT ‖ ≤ ‖A‖2F /s

Proof. We start by bounding ‖AAT −BBT ‖ from above:

‖AAT −BBT ‖ = max
‖x‖=1

(xTAATx− xTBBTx) = max
‖x‖=1

(‖xTA‖2 − ‖xTB‖2).
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We open this with a simple telescopic sum ‖xTB‖2 =
∑n

j=1 ‖xTBi‖2−‖xTBi−1‖2 and by replacing ‖xTA‖2 =∑n
j=1(xTAj)

2.

‖xTA‖2 − ‖xTB‖2 =

n∑
j=1

[(xTAj)
2 − (‖xTBi‖2 − ‖xTBi−1‖2)] (9)

=

n∑
j=1

[((xTAj)
2 + ‖xTBi−1‖2)− ‖xTBi‖2] (10)

=

n∑
j=1

[‖xTCi‖2 − ‖xTBi‖2] (11)

=

n∑
j=1

[‖xTDi‖2 − ‖xTDiW i‖2] (12)

=

n∑
j=1

xT [Di(Di)T −Di(W i)2(Di)T ]x (13)

=

n∑
j=1

xT [δ2iD
i(Σi)−2(Di)T ]x (14)

=

n∑
j=1

xT [δ2iU
i(U i)T ]x (15)

≤
n∑

j=1

δ2i ‖U i(U i)T ‖ ≤
n∑

j=1

δ2i (16)

For this to mean anything we have to bound the term
∑n

j=1 δ
2
i . We do this computing the Frobenius norm

of B.

‖Bn‖2F =

n∑
i=1

‖Bi‖2F − ‖Bi−1‖2F (17)

=

n∑
i=1

[‖Bi‖2F − ‖Di‖2F ] + [‖Di‖2F − ‖Ci‖2F ] + [‖Ci‖2F − ‖Bi−1‖2F ] (18)

Let us deal with each term separately:

‖Bi‖2F − ‖Di‖2F = tr(Bi(Bi)T −Di(Di)T ) = tr(δ2iU
i(U i)2) = sδ2i (19)

‖Di‖2F − ‖Ci‖2F = 0 (20)

‖Ci‖2F − ‖Bi−1‖2F = ‖Ai‖2 (21)

Putting these together we get

‖B‖2F = ‖Bn‖2F = ‖A‖2F − s
∑

δ2i

Since ‖B‖2F ≥ 0 we conclude that
∑
δ2i ≤ ‖A‖2F /s Combining with the above:

‖BBT −AAT ‖ ≤ ‖A‖2F /s

Finally, we recall that to achieve the approximation guarantee ‖A− PB
k A‖ ≤ σk+1 + ε‖A‖ it is sufficient to

require ‖BBT −AAT ‖ ≤ ε2‖A‖22/2 which is obtained when

s ≥ 2r

ε2

This completes the claim.
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Discusion

Note that while the deterministic lossy SVD procedure requires less space it also requires more operations
per column insertion. Namely, it computes the SVD of the sketch in every iteration. This can be somewhat
improved (see [4]) but it is still far from being as efficient as column sampling. Making this algorithm faster
while maintaining its approximation guaranty is an open problem. Another interesting problem is to make
this algorithm take advantage of the matrix sparsity.
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