
Comparing Count Sketches [1,2] and Count Min Sketches [3]

E rez Shabat 300022498

1 Introduction

In the world of today, there is a lot of information we can go through, but might not have enough to store
it all as is for future calculations. For example, we might want to find the frequency of some item in a
long stream, or perhaps the most frequent items.

the sketch, which is sublinear in space compared to the stream.

M. Charikar, K. Chen, and M. Farach-

algorithm in class.

A second algorithm published by - in
which we are also able to create a sublinear sketch of the stream, and approximate the count of items
quickly.

Count Min Sketch, including the space and time
required to create the sketch and answer queries, and the time required to approximate the k most frequent
items.

2 The Count-Min Sketches A lgorithm

Given a stream = < 1, 2, 3 > of objects 1, 2 , each appearing 1 , 2 , ()
times, the Count-Min Sketch data structure allows us to approximate (), the number of occurrences of
the element at time for any element .

The sketch requires (ln 1) space and lets us calculate such that:

+

The Count-Min Sketch data structure is an matrix (referred to as count) where = and =

(1) .

The structure also includes hash functions:

 1, 2, 1. . {1. . }

Where n is the number of different objects in our stream.

Each hash function is associated with a row in the matrix, and all hash functions are pair-wise
independent.

ecute the update procedure for each element in the stream
as we encounter it.

The Update Procedure:

When we encounter an object by 1. The counter is the
determined by .

Formally: 1. . : , = , + 1

Approximate Query:

Clearly for each we immediately have () , . However, the bound may be poor. To
nt.

The query function will therefore be:

= min , .

gave for Counting Sketches in class, the proof is a little different than the one given by Cormode and
Muthukrishnan [3].

First . Let 1 to be the set of all elements that sets in the same place as
(this is similar to the inverse we defined in class for Counting Sketches).

Formally:

1 = { | = }

= =
1

=

+
1 { }

The expected difference between the i th estimator for () and () itself can be bounded:

=
1

=

1
=

= 1

We get this from the assumption that is a perfect hash function, and therefore the probability for a
collision is 1 which is set to .

Using the Markov inequality:

[()] = Pr
1

From the pair-wise independence of the hash functions, we get:

1
=

1
ln 1 =

Therefore,

+ 1

F inding the frequent items:

stream, and update a Count-Min Sketch with all the elements seen so far. When we process (update) an
element, we also approximate its frequency (using the query method above) and keep the top k most
frequent items.

3 Analysis of Count Sketches

 of the Count Sketches algorithm. This analysis is similar to the one

compare the two algorithms later on.

 item a a
count[i][()], and analyze = () [][()] () (i.e. X denotes the error of the
approximation in row i). For ! = , denote the contribution of to the error. Note that this happens

only when = (), with probability 1. In such situation, it contributes () () to X.

=

() . 1
2

() . 1
2

0 . 1 1

Therefore = 0.

= -‐2 2 =
2

= 1. The error is then the sum of all other

X = Y2 + Y3 + +

All -wise independent because the hash functions are pair-wise independent:

= 2 + + =

2
2
+ +

2
=
1 2

=2

= 2
2 (1)

Pr | | 2
2

1
1
2

We demand 12
1 = (2)

Now with taking the median of = 1
get

() 2
2

1 2

With probability 1 for = (ln 1).

4 Comparing Count Sketches and Count Min Sketches

 compare the two algorithms, by means of space required by their data structures, the running
time of the update operation and the running time of the query operation.

Count-Min:

Space: The space required by the Count-Min Sketches data structure is + , because we keep a
count matrix sized and hash functions (each of them can be stored in 1 space).

Overall, the sketch requires = ln 1 space.

Update: The update time for each element is = (ln 1)

Query: The minimum of elements can be found in linear time, and therefore the query time is =
1

Error measurement: The error is measured as a ratio to the norm 1 of the stream , in our
case, the number of elements in the stream.

Count-Sketches:

Space: The space required by the Count Sketches + 2 , because
we keep a count matrix sized and 2 hash functions per row.

Overall, the sketch requires = ((e2) ln 1) space.

Update: The update time for each element is = (ln 1).

Query: Finding the median of elements can be done in linear time using some selection algorithm, and
therefore the query time is = (ln (1)).

Error measurement: The error is measured as a ratio to the norm 2 of .

Norm 2 of a vector is in general bounded by the first norm. From this perspective Counting Sketches

The following table sums up some of the important differences of the algorithms:

Algorithm Count-Min Sketches Count Sketches (from
class)

Comments

Data Structure Space
ln

1
 (2 ln

1
) Count-Min requires

space that is
proportional to 1
while Count-Sketches
requires space that is
proportional to 12

Time per update (ln
1
) (ln

1
) Update and query

time are similar in
both algorithms

Time per query (ln
1
) (ln

1
)

Epsilon error is a ratio of
1 norm-1 of the

frequency vector.
2 - norm-2 of the

frequency vector.
When setting same
value for in both
algorithms, the Count
Sketches gives a
better error
guarantee.

Hash function
independence

Pairwise Pairwise

5

 implemented both of them in Java,
using very similar data structures and objects (source code in Java 1.6 is attached).

 free version available at
http://printkjv.ifbweb.com/).

As mentioned before, the algorithms differ in their error measurement, which comparing the results
difficult. In order to make the comparison more applicable,
both algorithms as a word count.

This was computed as follows:

- Count how many times each word appears and put the results into a vector f.
- Compute norm-1 of the vector.
- Compute norm-2 of the vector.
- Compute for the Count-Min Sketch algorithm using:

1
- Compute for the Count-Min Sketch algorithm using:

2

When using = 0.01, these were the results:

-Min Sketch algorithm
performs better. This is due to the (12) space required in the Count Sketches algorithms versus the (1)
in Count-Min sketch while the norm values stays the same (the dataset stays the same). This matches our
expectations.

Timing the results gives similar results between the two algorithms, and only depends on the parameter
as expected (Since both update and query operations depend only on .

 it runs
twice as many hash calculations than the Count-Min algorithm.

Another interesting thing to look at is the algorithms error count in practice, when we limit their space
usage. In the following graph we can see the average error count (in words) of each of the algorithms,
when they are limited to some space (in all cases =0.01).

We can see that using this dataset (King James Bible), the Count-Min sketch algorithm gives better
average error than the Count Sketches when using the space bound.

References

[1] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In Procedings
of the International Colloquium on Automata, Languages and Programming (ICALP), pages 693 703,
2002.

[2] Edo Liberty. Lecture Notes, Data Mining 2012, Tel Aviv University.

[3] G. Cormode, S. Muthukrishnan. An Improved Data Stream Summary: The Count-Min Sketch and its
Applications.

