Theoretical Project in Data Mining: SVD
Computation

Abstract

SVD conveys important geometrical insights about the matrix. It is a
step in many algorithms and play a central role in data analysis and sci-
entific computing. It has applications in many areas such as least squares
problem ;| computing pseudoinverse , Jordan canonical form , solving in-
tegral equations , digital image processing , optimization, ets.. Golub and
Van Loan [4] ascribe a central significance to the SVD in their definitive
explication of numerical matrix methods stating:

....perhaps the most recurring theme in the book is the practical and
theoretical value of the SVD ..

Many applications involve computing SVD of large matrices using lim-
ited computer resources, such as smartphones. Therefore, more than ever
before, it is important to make the computaton as efficient as possible.
Combination of theoretical chalenge and applicativity is my personal rea-
son to choose this subgect for the project.

Definition

A€ C™*" g singular value decomposition SVD of A is a factorization
A=UxV*
where
e U € C™*™ ig unitary ,
e V € C™*™ ig unitary ,
e ¥ € R™*™ ig unitary .

> is rectangular diagonal matrix and has the same shape as A. Its diagonal
entries o;, called singular values, are real and nonnegative. We will assume
o1 > 02> ...> 0, >0, where p = min (m,n). U consist of m left singular
vectors {uy,...,un,} and V consist of n right singular vectors {vy,...,v,}.



Matrix Properties Via the SVD
Let r < p denote the number of nonzero singular values of A.
1. Every matrix has a singular value decomposition

2. The nonzero singular values of A are square roots of the nonzero eigenval-
ues of AA* or A*A

3. The rank of A is equal to the number of its nonzero singular values

rank(A) =r

4. range(A) = span{uq,...,u,} and null(A) = span{v,41,...,0n}
5. ||Ally =01

6. |Allp=+/07+03+...+02
7. If A is Hermitian then

8. For A € g™m>m
|det(A)| =[] o
=1

9. A can be represented as a sum of rank one matrices

A= Zaiuivf
i=1
10. For any k with 0 < k < r define truncates SVD

k
Ak: E oiuiv;‘
i=1

If k = p, define 041 = 0. Then

A = Agll, = inf A= Blly = oks1
B E C7VL><7L
rank(B) <k

Most of this properties can be easily proved and have computational conse-
quences. The best method for determining the rank of a matrix is to count the
number of singular values greater than a judiciously chosen tolerance. The most
accurate method for finding an orthonormal basis of a range or nulspace is via
SVD. Althouh QR factorization is faster, it is not always as accurate. Property
5 gives us a way to computel|.||, and property 9 provides us with a standard
way for computing low rank approximation with respect to |||, .



SVD of A is Eigenvalues of A*A

SVD is related to EVD of Hermitiam matrix: If A = UXV*SVD decomposi-
tion of A, then A*A = VX*3XV* EVD of A*A. The eigenvalues of Hermitiam
matrix are real and non-negative, thus it is diagonalizable. The matrix A*A is
known as covariance matriz of A, and has interpretations in statistics and other
fields. Therefore, computation of SVD of arbitrary matrix can be reduced to
the computation of the eigenvalue decomposition of Hermitian square matrix.
Mathematically speaking, we might calculate the SVD of A as follows:

1. Form A*A

2. Compute the eigenvalue decomposition of A*A = VAV*

3. Define ¥ to be m x n nonnegative diagonal square root of A

4. Solve the system UX = AV for unitary U , via QR factorization

Unfortunately, it is numerically unstable. This algorithm is not practical, be-
cause it reduces the SVD problem to eigenvalue problem, that may be much
more sensitive to perturbations. From analyzing stability of the algorithms as
appears in [1], we get that this algorithm performs well on dominant singular
values of A, but for small singular values o < || 4|, we expect loss of accuracy.

Two Phase Algorithm

Since 1960s two phase approach has been standard for the SVD.The matrix is
brought into bidiagonal form , and then the bidiagonal matrix is diagonalized:

X X X X X X X
X X X X X X X
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X X X X |Phasel X X | Phase2 X
X X X X X X
X X X X

A

In standard algorithms for SVD no matrices of dimension as m + n are
formed explicitly. The key step is to make the process fast is an initial unitary
reduction to bidiagonal form.

Phase 1 : Golub-Kahan Bidiagonalization

Also known as Golub-Reinsch algorithm GR-SVD. In Phase! we bring A into
bidiagonal form by applying distinct unitary operations on the left and right.
Finite Householder reflectors are applied alternately: n are applied on the left
and n — 2 on the right. Define:



and
QW k=12 ..n-2

such that
P(")...P(l)AQ(l)...Q("_2) =B

where B is upper bidiagonal matrix. P®* zeros out the subdiagonal elements
in column 7 and Q) zeros out the appropriate elements in row j, without
destroying the zeros introduced before. Because all the transformations are
unitary, the singular values of B are the same as those of A. Thus if:

B=GXH*
then
A=PGYH*Q*
so that
U=PGYV =QH (1)
with

P=pPY. P Q=qQW. Q2

Total amount of work for Golub-Kahan bidiagonalization : ~ 4mn? — 3n? flops.

Phase 1: Lawson-Hanson-Chan Bidiagonalization

For m > n this operation count is unnecessary large.Alternative method for
bidiagonalization first proposed by Lawson and Hanson and later developed by
Chan [2]. The idea is illustrated as follows:

X X X X X X X X X X
X X X X X X X X X
X X X X — X X — X X
X X X X X X
X X X X

A QA U*Q*AV

We first triangulate A before bidiagonalizing it. We begin by computing QR
factorization A = QR . Then we compute the Golub-Kahan bidiagonalization
of R, B=U*RV. The QR factorization requires 2mn? — 2n? flops and Golub-
Kahan procedure now operate on the upper n x n submatrix requres %n?’ flops.
Total amount of work for LHC bidiagonalization: ~ 2mn? + 2n3 flops.

Phase 1:Tree Step Bidiagonalization

LHS is cheaper than Golub-Kahan for m > %n , but this idea can be gener-
alized so as to realize a saving for any m > n. The Trick is to apply the QR
factorization not at the beginning of the computation, but at the a suitable

point in the middle. This is advantageouse because in Golub-Kahan process,



a matrix with m > n becomes skinnier as bediagonalization proceeds. After
step k, aspect ratio of the remaining matrix is (m — k)/(n — k), and when this
figure gets sufficiently large, it makes sense to perform a QR factorization to
reduce the problem to a square matrix. If the goal to minimize the operation
count, QR factorization should be performed when the aspect ratio reaches
(m—k)/(n—k)=2.

Total amount of work for Three Step Bidiagonalization:~ 4mn? —
2(m —n)? flops.

This is a modest improvement over the two methods for n < m < 2n.

4,3 _
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Phase 2

In Phase2, B is iteratively diagonalized by QR method
BO 5 BW 4 %

where
B+ — g+ g)p()

wher S@) and T are products of Givens transformations and therefore unitary.

The matrices 7Y are chosen so that the sequence M) = B()*B(®) converges
to a diagonal matrix, while S() are chosen so that all B(*) are of bidiagonal form.
The product of the S and the T(®) are exactly the matrices H* and G* as
defined above in eq. (1). The average number of iterations on B(*) is usually
less than 2n. In other words B(*™ is usually a good approximation to a diagonal
matrix.

Implementation Details

Assume that we can destroy A and return U in the storage for A. In Phasel
the P*) are stored in the lower part of A, and Q) are stored in the upper
triangular part of A. After bidiagonalization the Q) are accumulated in the
storage provided for V', the two diagonals of B(Qare copied to two other linear
arrays, and P*) are accumulated in A.

In Phase2 for each i :

e S is applied to P from the right
o T(* is applied to Q* from the left

in order to accumulate the transformations.
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