
A Sparse K-Means Clustering Algorithm 

Name: ********** 

ID: ********** 

 

K-means is a broadly used clustering method which aims to partition n observations 

into k clusters, in which each observation belongs to the cluster with the nearest mean. 

The popularity of K-means derives in part from its conceptual simplicity (it optimizes 

a very natural objective function) and widespread implementation in statistical 

packages.  

Unfortunately, it is easy to construct simple examples where K-means performs rather 

poorly in the presence of a large number of noise variables, i.e., variables that do not 

change from cluster to cluster. These types of datasets are commonplace in modern 

applications. Furthermore, in some applications it is of interest to identify not only 

possible clusters in the data, but also a relatively small number of variables that 

sufficiently determine that partition. 

To address these problems, Witten and Tibshirani (2010) proposed an alternative to 

the classical K-means - called sparse K-means (SK-means) - which simultaneously 

finds the clusters and the important clustering variables. 

As a motivating example, the following are two clustering results of 500 independent 

observations from a bivariate normal distribution. A mean shift on the first feature 

defines the two classes. The resulting data, as well as the clusters obtained using 

standard k-means clustering (k=2) and the sparse k-means clustering, can be seen 

below. Unlike standard k-means clustering, sparse k-means clustering automatically 

identifies a subset of the features to use in clustering the observations. Here it uses 

only the first feature, and consequently agrees quite well with the true class labels. 

 
 



Let X denote an n!p data matrix, with n observations and p features. One way to 

reduce the dimensionality of the data before clustering is by performing PCA in order 

to obtain a matrix A of reduced dimensionality; then, the n rows of A can be clustered. 

However, this approach has a number of drawbacks. First of all, the resulting 

clustering is not sparse in the features, since each of the columns of A is a function of 

the full set of p features. Moreover, there is no guarantee that the new features in A 

providesthe best separation between subgroups. 

 

K-means clustering minimizes the within-cluster sum of squares (WCSS). That is, it 

seeks to partition the n observations into K sets, or clusters, such that the WCSS 

 

is minimal, where nk is the number of observations in cluster k and Ck contains the 

indices of the observations in cluster k. This is equivalent to: 

 

where  is the mean of feature j for all the elements in cluster k. 

Note that if we define the between-cluster sum of squares (BCSS) as 

 

where  is the mean of feature j for all the elements in the dataset, then minimizing 

the WCSS is equivalent to maximizing the BCSS.  

One could try to develop a method for sparse K-means clustering by optimizing a 

weighted WCSS, subject to constraints on the weights: 

 

where wj is a weight corresponding to feature j and s is a tuning parameter. Since each 

element of the weighted sum is negative, the maximum occurs when all weights are 



zero, regardless of the value of s. This is not an interesting solution. We instead 

maximize a weighted BCSS, subject to constraints on the weights. The sparse K-

means clustering criterion is as follows: 

 

 

 

Some observations about this criterion: 

1. If w1 = w2 = … = wp , then the criterion reduces to minimizing the WCSS, which 

can be solved by the standard K-means clustering algorithm. 

2. The L1, or lasso, penalty on w results in sparsity for small values of the tuning 

parameter s. That is, some of the wj’s will equal zero. 

3. The L2 penalty also serves an important role, since without it, at most one element 

of w would be non-zero in general. 

4. The value of wj can be interpreted as the contribution of feature j to the resulting 

sparse clustering: a large value of wj indicates a feature that contributes greatly, 

and wj = 0 means that feature j is not involved in the clustering. 

 

 

 

The sparse K-means clustering maximizes the objective function by carrying out the 

following steps: 

1) Initialize w as  

2) Iterate until the weight changes converge to 0 (see the stopping criterion on the 

next page) 

a. Holding w fixed, optimize the criterion with respect to C1,…,Ck. That 

is: 

 

by applying the standard K-means. 



b. Holding C1,…,Ck  fixed, optimize the criterion with respect to w by 

applying: 

 

Since in the dataset of the experiment have certain special 

characteristics, the general solution for this convex problem is not 

presented here. The simplified solution will be given in the experiment 

section. 

3) The clusters are given by C1,…,CK, and the feature weights corresponding to this 

clustering are given by w1,…,wp. 

 

In the stopping criterion for step 2, we stop when the sum of changes in weights is 

small in relation to the weights: 

 

where r is the number of the current iteration. 
 
 
 

The Experiment 
 
To evaluate the performance of the Sparse K-means in relation to the classic K-means, 

I ran text classification experiments on the 20 newsgroups data set. 20 Newsgroups 

(as the title suggests) is a collection of newsgroup posts from 20 different 

newsgroups from the mid 1990s. There are approximately 1000 posts per 

newsgroup. I used the ”20news-bydate” version, which has duplicates removed, 

posts are sorted within each newsgroup by date into train/test sets and 

newsgroup-identifying headers are discarded. My pre-processing consisted of 

(in order) (1) splitting on space characters, (2) lower-casing all alphabetic 

characters, (3) discarding tokens of length 25 or greater (required for the 

removal of binary code), (4) stemming each token (excluding stop words). I 



computed a document vector for each post, consisting of the number of times 

each token occurred in that post. After running this pre-processing on the 

collection, 2,216,913 occurrences of 79970 distinct terms were found in 18832 

documents. 

In addition, at the end of the pre-processing, all the distinct terms were sorted in 

accordance to the variance of their frequency in a post across the dataset. It is possible 

choose the t terms with the highest frequency variance. This follows the concept that 

words with high frequency suggest a better separation of posts into groups. 

The general solution for the convex problem in step 2b of the Sparse K-means 

clustering algorithm involves the soft-thresholding of the BCSS for each token. This 

proposition follows from the Karush-Kuhn-Tucker conditions (see e.g. Boyd & 

Vandenberghe 2004). However, since the number of occurrences of a token in a post 

is non-negative, optimizing weights can be found by applying the following 

simplified solution: 

 

 
While in the Sparse K-means algorithm, the weights are re-computed in each iteration, 

the weights in the Standard K-means algorithm are fixed. Since some words are 

generally more common than others and therefore are not good keywords for 

distinguishing between groups of posts, an inverse document frequency factor (IDF) 

was incorporated, which diminishes the weight of terms that occur very frequently 

across the dataset. 

 

Therefore, for each document a normalized tf-idf vector (term count inverse document 

frequency) was computed. 

 
 



 
 
 
 

Results 
 

Performance was measured using CER (Classification Error Rate), that is, the number 

of misclassified posts in relation to the total number of posts. A lower CER indicates a 

better classification algorithm. The newsgroup of a cluster is set to be the newsgroup 

with the highest number of posts belonging to that cluster. 

 
The following are the CER results for running K-means algorithm versions on the 

whole dataset (20 newsgroups): 

 
Number of terms used Standard K-means Sparse K-means 

100 0.8538 0.8505 
1000 0.6686 0.6602 
10000 0.6422 0.6313 

 
The following are the CER results for running K-means algorithm versions on 

different number of newsgroups using 10000 terms with the highest frequency 

variance across the dataset (newsgroups were chosen randomly):  

 
Number of newsgroups Standard K-means Sparse K-means 

2 0.2676 0.2676 
5 0.3932 0.3867 
10 0.4804 0.4796 
20 0.6422 0. 6313 
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