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Plan of the talk

= Part 1: Introduction and fundamental results
» Clustering: from the Euclidean setting to the graph setting
» Correlation clustering: motivations and basic definitions,

» Fundamental results
» The Pivot Algorithm

= Part 2: Correlation clustering variants
» Overlapping, On-line, Bipartite, Chromatic
» Clustering aggregation

= Part 3: Scalability for real-world instances
» Real-world application examples
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Clustering, in general

Partition a set of objects such that “similar” objects are grouped
together and “dissimilar” objects are set apart.

Setting

U

Objective function

.

Algorithm
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Fuclidean Setting

Py points x; € RY

Small H:EZ — Iy H indicates the two points are “similar”
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Fuclidean Setting

Clusters Sj \Q Points I; © ]Rd
®
o @
®
®

A cluster is a set of points
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Fuclidean Setting

N

" Clusters Sj —_./ @ Points I; © ]Rd

® Centers ¢; € R¢

Each cluster has a cluster center
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Euclidean objectives

Points ; € R4

Clusters §; — ./ ®

o
o
(o]
o ° ® °
¢ Centers ¢; € R¢
k
o 2
K-means objective 54 SJ Hiﬁz — Csz
J=11€S5;
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Euclidean objectives

" Clusters Sj —_./ @ Points I; © ]Rd

® Centers ¢; € R¢

k
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K-median objective >4 >4 Hﬂfz — CjHQ
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Euclidean objectives

" Clusters Sj —_./ @ Points I; © ]Rd

® Centers ¢; € R¢

K-centers objective mZaX T%ln HCCz — Gy HQ
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Graph setting

G(V, E)
/ W "

Nodes V; €& V Edges € c kB

€ij € F means the two nodes are “similar”
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Graph setting

E(S)-= ?.)
e

Cluster S

€ij & ' means the two nodes are “similar”

YAHOO!



Graph setting

E(S,S) 5

Cluster S

We want S and S large and E(S,S) small
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Graph objectives
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Graph objectives

yd N ~_
Cluster S E(S,S) IS
Edge expansion ‘E(S’ S)‘ st |S‘ < m
S 2
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Graph objectives




Where ‘S |

Graph objectives

@

k-balanced partitioning E(Sl, .

n/k

Sk)
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Graph objectives

%

| o E(S;, S;)
Multi-way spectral partitioning max

1€1,...k E(SZ)
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Correlation Clustering objective

(&

Let (' be a collection of cliques (clusters).
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Correlation Clustering objective

Redundant edge Missing edge
ec B, e2C e FE, eecC

Find the clustering that correlates
the most with the input graph
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4 Basic variants

Unweighted

Weighted

Min-

disagree mln Z ng zg mcln ; Wij Ly ( g)
‘|‘Z —I—wa(l Cfij)ErLJ
0]
Max-
agree maxz Cii B mgxz w;; Cii By
0] 1,]
+> (1 1 —Eij)| + Y wi;(1—Cij)(1 — Eij)
0] t,]
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4 Basic variants

Unweighted Weighted
Min- // \ :
disagr mm Z Ci; (1 — Eyj) In Z w;;Ci; (1 — Ejj )
(2]
+Z > wii(1 = Cij) By
1,J
Max-
agree | M1AX 77 L7 max > wiCij By
1] 1,)
+> (1 1 —Eij)| + Y wi;(1—Cij)(1 — Eij)
,J 1,]
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Correlation Clustering objective

Important points to notice
= There is no limitation on the number of clusters
= and no limitation on their sizes

For example: the best solution could be

= T giant cluster
*" N singletons

YAHOO!
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Hortonworks Apr 24 I

Hortonworks Apr 24

Hortonworks Apr 24

Hortonworks

Hortonworks

Hortonworks
To Me

This message contains blocked Images. Shov Images

- What is Enterprise Hadoop?

£ oo .,

Change this setting

Hortonworks Discover Enterprise Hadoop

HORTONWORKS DATA PLATFORM

There are numerous Apache Software Foundation projects that comprise the
services required by an enterprise to deploy, integrate and work with Hadoop
Each has been developed to deliver an explicit function and each has its own

Your trip to Newark, NJ is starting soon!

Support at Tripit Apr 24
To Me

Your trip to Newark, NJ is starting soon!

Support at TpIt AL

This message contains locked imager. Show images Grengetis seting
Pa

on it

Heal

plas

Pack your bags — your trip to Newark, NJ starts
on Sunday!

Summer Travel Plans? Save 20% on Tripit Pro Now!

en
™ Me

Know a traveling grad? Give them Triplt Pro

o
gl
‘Complimentary Upgrade ta Triplt Pro for Your Upcoming Trip!
i -
Complimentary Upgrade ta Triplt Pro for Your Upcoming Trip!
e ‘.
e
sk
Tripiit........
I

Head to your itinerary to check into your flight, make updates, and share your
plans with friends and family.

Summer internship at Yahoo!(4)

Liron David Jun 16
To Me

ok, thanks a lot!

Liron

Reply, Reply All or Forward | Mor

Me o 4 1 i Jun 16

YAHOQO!
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Document de-duplication

amazoncom

Thanks for your order, Martin Flim bertont

Want to manage your arder online?

If wvou need to check the status of vour order or make changes, please visit our home page at Amazon.com and click on

Al g LrOaTmn aThon

E-mail Address: lostiddude@vahoo.com

Billing Address:

Martin Flimberton

1434 Main Street Road
Clenbert lows, [llinois 560121
United States

Order Grand Total: $53.99
Get the Amazon.com Rewards Visa Card and get $30 instantly as =

Shipping Details : Bthdayconsulting

Order #: 104-3041649-B513858
Shipping Method: Standard Shipping
[temns: s50.00

Ehipping & Handling: 53.99

Total Before Tax: £53.99

Estimated Tax To Be Collected:* 50.00

Order Total: $53.99

Delivery estimate:Oct. 24, 2012 - Now. B, 2012
1 "Microsoft Office 2010: Essential [Shelly Cashman Series)"™
Shelty, Gary B.; Paperback; §50.00
In Stock
Sold by: Bthdayconsu

Preston
amazoncom

Thanks for your order, Preston Presterton!

Want to manage your order online?
If vou need to check the status of vour order or make changes, please visit our home page at Amazon.com and click on %

E-mail Address: mepartydj@yahoo.com
Billing Address:

Preston Presterton

259 Greenpaoint DR

DALLAS, TH 75231-9126

United States

Order Grand Total: $97.41
Get the Amazon.com Rewards Visa Card and get $30 instantly as an Amazon.com Gift Card.

Order Summary:

Shipping Details : buybackselyria

Order #: 002-1903988-3076225
Shipping Method: Standard Shipping
[tems: 530.68

Shipping & Handling: s2.498

Total Before Tax: 533.66

Estimated Tax To Be Collected:* 50.00

Order Total: £33.566

Delivery estimate:Oct. 16, 2012 - Oct. 31, 2012

1 "Fawlty Towers: The Complete Collection Remastered"”
> Cleese, John; DVD; 530.68

They are not identical

In Stock
Sold by: buybackselyria

YAHOO!



Document de-duplication

Your trip to Newark, NJ is starting soon!

Support at Trpit
To Me

?
e,

Trip

tfrom Caneur
Pack your bags — your trip to Newark, NJ starts
on Sunday!

Head to your itinerary to eheck into your flight, make updates, and share your
plans with friends and family.

Complimentary Upgrade to Triplt Pro for Your Upcoming Trip!

Know a traveling grad? Give them Triplt Pro

iy Tripit
e Ly
—nde onfiect win u
Tripirt 00000
r—

Give your grad the gift
of stress-free travel.

Triplt Pro
Just $39/year” \ abilty to find

And which is similar to which is not always clear...

YAHOO!



Document de-duplication

ars| B Pt | >
m@”ﬁﬂ? M@Lﬂﬁ [ ton] iﬂ g@.@m :Ha%@'!{fr%’«? - 8'97’ ﬂmm:llr pod
S G Dole @ﬁ@p & - —© = g e -
o .@f@“- = ) — W Niifri (u.nn . @%&‘.‘a e
mg pasant Bl @ Q; | sy m "'“ve_nsﬁr-w .- Mﬁ’mm [T ] b‘@“
L =, ¥ tisd itthe J
| ores | abm LB, @8F =) =0 mafe |
ovtr || e .. " F |/
@ @ WiH j.: I 3 G i z \."'-.‘ @ I' (é' Um% ln.uw:jﬂé & uﬁ&ﬁ .!
o IR o | iy cﬁ&c" o EEg | | |

|| fgec m\w
7/ | Bﬁm stirfast
wnlél-sv | ) EBe®

[e
A

Lo | A -3
\\ \ ?‘ -'@ ,,. 2t | 3 4 ; @ c&w
AL L 2 so00 o
N "o | Popicil :
o

@PEPSICO MARS @ M';ﬁjm

Hor Pockgrs

@%

Py -}a;’/ 1 . 4 \ G \ =
il / &F\Nle!-l VlCHY .'. |' - \r \ 1r - ==k A
MEVENPICK = f PowerBar | w || @ @ I' fbl"@ [ =y _-;‘ anﬁﬁm "\ -
e | ol =) - o
O | — * OMBRELLE i.' |
= s, | O & it .| e MW l@a @ V6 i | | [OniTocr OAB | s-y@ s
“ m | Gerber, = 11 | b A ,-' m L) 7
U V| | = | Zﬁ ory 40y @ @ o v rezcrne| e | Sun i BEE | @ |
RS PURINAD e — =) [evarnon OI;\\/ | _ | a @ Matrin.  Pepeid St H‘m:‘n L
it g CONVERGH® | SUDAFED Imodium |
Benerul @B e R\U"‘llﬂlf&x‘\”g““' —J .\ .J“ E?;;ff: m{&é{_ﬁwx |\W || Potporin > | corvtte  NicoDem
m[ﬁ@m]% JesSimafurent N [ punem ]| s e 9;2—?1' 5 TAMPAX | ] D [REE]
4 FHSkies | - — ) DURACELL . <
- sttt DIESEL LacosTE BO&"&' "*"‘T": e | |0 papes || POR

.. (:a"y mshncls @ @ . Bliﬂlll'l |

28

YAHOQ!



29

Motivation from machine learning




Motivation from machine learning

Input graph Clustering Errors
(Result of classifier) W.{’.l'. input

Output of the
clustering algorithm

Classification
Errors

Clustering Errors
w.r.t. true clustering

True clustering
(unknown)

Space of valid
clustering solutions

% YAHOQ!



Some bad news : min-disagree

» Unweighted complete graphs - NP-hard (BBCO02)
» Reduction from “Partition into Triangles”

» Unweighted general graphs - APX-hard (DEFIO6)
» Reduction from multiway cuts.

» Weighted general graphs - APX-hard (DEFIO6)
» Reduction from multiway cuts.

YAHOO!



Algorithms for unweighted min-disagree

An algorithms is a (' approximation if:

E[ALG] < C - OPT

[BBCO2] ~ 20, 000 O(n?)
[DEFI06] 41log(n) LP
[CGWO3] 4 LP
[ACNAOQ5] 2.5 LP
[ACNAO5] 3 O(m)
[ALO9] <3 O(n) + OPT

YAHOO!
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Algorithm warm-up

From

Correlation clustering, 2002
Nikhil Bansal, Avrim Blum, and Shuchi Chawla.



Algorithm warm-up

A

YAHOO!



Algorithm warm-up

A

Consider only clustering to 2 clusters (for now...)

YAHOO!



Algorithm warm-up

PR
7

U
Consider all clustering to 2 clusters of the form

™.

(N(v), N(v))

YAHOO!



Algorithm warm-up

% N (v)

™.

W
Consider the one whose neighborhood disagrees
the least with the best clustering.

(Here d=1)

YAHOO!



Algorithm warm-up

A

Each node “contributes” at least d/2 mistakes.

Therefore OPT > nd/2

YAHOO!



Algorithm warm-up

A

On the other hand ALG < OPT +nd
(Each of the d disagreements adds at most n errors)

YAHOO!



Algorithm warm-up

A

Putting it all together OPT > nd/2 and ALG < OPT +nd

Gives: ALG < 30PT

YAHOO!
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LP based solutions

Erik D. Demaine, Dotan Emanuel, Amos Fiat, Nicole Immorlica
Correlation clustering in general weighted graphs, 2006

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth.
Clustering with qualitative information, 2003

Nir Ailon, Moses Charikar, Alantha Newman 2005
Aggregating inconsistent information: ranking and clustering



Minimize

s.t.

P relaxation
2. dit ), 1-dy
(1,J)€EE (4,J)€E

Vij dij - {O, 1}
Viik dik < dij; +djg

YAHOO!
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LP relaxation
Minimize Y dy+ ) 1-—dy
(¢,J)EE (¢,J)¢E
s.t. \V/ij dz’j c [07 1] instead of d;; € {0,1}

Vi,j,k dz’k < dij + djk triangle inequality

The solution is at least as good as QPT
But, it’s fractional...

YAHOO!



Region growing

YAHOO!



Region growing

Pick an arbitrary node

YAHOO!



Region growing

Start growing a ball around it

YAHOO!



Region growing

Stop when some condition holds.

YAHOO!



Region growing

And repeat until you run out of nodes.

YAHOO!



Some good and some bad news

Good news:
= [DEFIO6] [CGWO3] For weighted graphs we get:

ALG < OPT -O(log(n))

= [CGWO03] For unweighted graphs we get:

ALG <40PT

YAHOO!
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Pivot

Nir Ailon, Moses Charikar, Alantha Newman 2005
Aggregating inconsistent information: ranking and clustering



Pivot

YAHOO!



Pivot

Pick a node (V;) uniformly at random

C' = {v;}

YAHOO!



Pivot

With probability 1 — d;; forall )
C<+CuU {Uj}

YAHOO!



Pivot

Recourse on the rest of the graph.

YAHOO!



Some good and some bad news

Good news:
= The algorithm guaranties

ALG <2.50PT

= This is the best known approximation result!

Bad news:
= Solving large LPs is expensive.
= This LP has €(n*®) constraints... argh....

55

YAHOO!
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Pivot - skipping the LP

Nir Ailon, Moses Charikar, Alantha Newman 2005
Aggregating inconsistent information: ranking and clustering



Pivot

YAHOO!



Pivot

A

Pick a random node (uniformly!!!)

YAHOO!



Pivot

F

Declare itself and its neighbors as the first cluster.

YAHOO!



Pivot

VAP

Pick a random node again (uniformly from the rest)

YAHOO!



Pivot

A

And continue until you consume the entire graph.

YAHOO!
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Some good and some bad news

Good news:
= The algorithm guaranties

E[ALG] < 30PT

= Running time is O(m), very efficient!!

Bad news:
= Works only for complete unweighted graphs

YAHOO!
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Further reading
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Online Correlation Clustering
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No need to choose: How to get both a PTAS and Sublinear Query Complexity

YAHOO!
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Correlation clustering variants

Overlapping
Chromatic

On-line

Bipartite

Clustering aggregation

YAHOO!



Overlapping correlation clustering

F. Bonchi, A. Gionis, A. Ukkonen: Overlapping Correlation Clustering ICDM 20T
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overlapping clusters are very natural
= social networks

= proteins

= documents

YAHOO!



From correlation clustering
to overlapping correlation clustering

= Correlation clustering:
» Set of objects V=A{v1,...,vn}
» Similarity function s:V xV —[0,1]

» Labeling function ¢:V — L

Cec(0) = > Is(u,0) = I(£(u) = £(v)),

(u,v)eV XV

= Qverlapping correlation clustering:

, Labeling function ¢:V — 2"\ {0}
»  Similarity function between sets of labels H:2" x 2" = [0,1]

Coce(0) = > [s(u,v) — H(E(u), £(v))]

(u,v)eV XV

o YAHOQ!
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OCC problem variants
(r, H, p)

= Based on these choices:

)

)

Similarity function s takes values in [0, 1] T = f
Similarity function s takes values in{0, 1} r = b
Similarity function H is the Jaccard coefficient H=J
Similarity function H is the intersection indicator H =17

Constraint on the maximum number of labels per object |[£(v)| < p, Vv € V
Special cases:
p=1 normal Correlation Clustering
p==Fk where |L|=k no constraint

YAHOO!
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Some results

H,p) is NP-Hard [from hardness of (r, H.1) ]

,I,p), with p > 1 is NP-Hard [from COVERING-BY-CLIQUES ]

I p) is hard to approximate [from COVERING-BY-CLIQUES ]
O(n?)) the optimal solution can be found in polynomial time
O(n?)) admits a zero-cost polynomial time solution

= Connection with graph coloring

= Connection with dimensionality reduction

YAHOO!
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Local-search algorithm

= \WWe observe that cost can be rewritten as:

Coce(V,0) = = Z >

161 ueV\{v}

= 5 Z Cypp(l(v)

veV

— s(v,u)]

where C,, () [0 = Y [H((v), () — s(v.u)

ueV\{v}

Algorithm 1 LocalSearch

I: initialize ¢ to a valid labeling;

2: while C,..(V. () decreases do

3 for each v € V do

4: find the label set L that minimizes
5 update ¢ so that ¢(v) = L;

6: return /

Cyp(L|0);

YAHOO!
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L ocal step for Jaccard
JACCARD-TRIANGULATION

» Given {(S',2j>}j:1...n

» Find X C U that minimizes

d(X, {(S), %) }j=1.. Z‘JX Sj) — %]

JACCARD-TRIANGULATION is NP-Hard

» generalization of “Jaccard median” problem*
» non-negative least squares + post-processing of the fractional solution

F. Chierichetti, R. Kumar, S. Pandey, S. VVassilvitskii: Finding the Jaccard Median. SODA 2010

YAHOO!
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Local step for set intersection indicator

= HIT-N-MISS problem
= [napproximable within a constant factor

= O(y/nlogn) approximation by Greedy algorithm

YAHOO!
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Experiments on ground-truth overlapping clusters

= Two datasets from multilable classification

» EMOTION: 593 objects, 6 labels
» YEAST: 2417 objects, 14 labels

= |nput similarity s(u,v) is the Jaccard coefficient of the labels of u
and v in the ground truth

YAHOO!
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Experiments on ground-truth overlapping clusters

Cost/edge

Cost/edge

0.2

0.1p

EMOTION

%H \“'W'TI

. ——cost
== =prec|

—

o
(0]
Precision & Recall

Precision & Recall

0.2

Cost/edge
o

o
—L

Cost/edge

T

YEAST

"y

1
1
1
o
=
(0]
(@]
o
(e}

(6)]
—
o
—
(&)
: )
N ]
©
(e 0]

Miidais

===prec10.9

g

| e
, ' : - ' ‘ 0.8
2 4 6 8 10 12 14

Precision & Recall

Precision & Recall
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Application: overlapping clustering of trajectories

Starkey project dataset containing the radio-telemetry locations of

elks, deer, and cattle.

88 trajectories
» 33 elks

» 14 deers

» 41 cattles

80K (x,y,t) observations (909 observations per trajectory in avg)
Use EDR* as trajectory distance function, normalized to be in [0,1]

s(u,v) =1 — edr(u,v)

Experiment setting: kK =5, p =2, Jaccard

*. Chen, M. T. Ozsu, V. Oria: Robust and Fast Similarity Search for Moving Object

Trajectories. SIGMOD 2005

YAHOO!



Application: overlapping clustering of trajectories

Ch Ca C3 Cy

clusters
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S016000
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5012000
5010000

LooRcog
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X TR0

30000
201000
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Chromatic correlation clustering

F. Bonchi, A. Gionis, F. Gullo, A. Ukkonen:
Chromatic correlation clustering
KDD 2012



heterogeneous data

objects of single type

associations between objects are categorical
can be viewed as edges with colors in a graph

YAHOO!



Example: social networks

YAHOQO!



Example : protein interaction networks

YAHOQ!



Research gquestion

= how to incorporate edge types in the clustering
framework?

= |[ntuitively:

YAHOO!



Chromatic correlation clustering

YAHOQO!



Chromatic correlation clustering

YAHOQO!



Cost of chromatic correlation clustering

YAHOQO!



Cost of chromatic correlation clustering

YAHOQO!
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From correlation clustering
to chromatic correlation clustering

= Correlation clustering:

» Set of objects V ={vi,...,vn}
» Similarity function sim : V' x V — [0, 1]
»  Clustering C:V —- N
cost(C) = Z (1 —sim(x,y)) + Z sim(x, y)
(z,y)eV XV (z,y) eV xV
C(x)=C(y) C(z)#C(v)

= Chromatic correlation clusterina:

» Pairwise labeling function /- VxV = LU {lo}
»  Clustering C:V —- N
, Cluster labeling function cl :ClV] — L

cost(C, cf) 22(1—1[6(:1:, y) = cl(C +Z [[{(x,y)#lo].
(z,y)eV XV, (x,y)eV XV,
C(z)=C(y) C(z)#C(y)

YAHOO!



chromatic PIVOT algorithm

= Pick a random edge (u,v), of color ¢

= Make a cluster with u,v and all neighbors w, such that
(u,v,w) iIs monochromatic

= 3ssign color ¢ to the cluster
= repeat until left with empty graph

" approximation guarantee 6(2D-1)

» where D is the maximum degree

" Time complexity O(|E|)

YAHOO!



how good is this bound ?

CP cost = 2D

optimal cost = |

YAHOQ!



Lazy chromatic pivot

= Same scheme as Chromatic Pivot with two
differences:

» The way how the pivot (x,v) is picked:

not uniformly at random, but with probability
proportional to the maximum chromatic degree

» The way how the cluster is built around (x,v):

not only vertices forming monochromatic triangles
with the pivots, but also vertices forming
monochromatic triangles with non-pivot vertices
belonging to the cluster.

= Time complexity O((|L]| + log |V]|)|E]|)

YAHOO!



chromatic pivot

YAHOQ!



chromatic pivot

YAHOQ!



chromatic pivot

YAHOQ!



chromatic pivot

YAHOQ!



chromatic pivot

YAHOQ!



chromatic pivot lazy chromatic pivot

YAHOQ!



lazy chromatic pivot

chromatic pivot

YAHOQ!



chromatic pivot lazy chromatic pivot

YAHOQ!
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not a counter—example anymaore

YAHOQ!
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An algorithm for finding a predefined
number of clusters

» Based on the alternating-minimization paradigm:
» Start with a random clustering with K clusters

» Keep fixed vertex-to-cluster assignments and optimally update
label-to-cluster assignments

» Keep fixed label-to-cluster assignments and optimally update
vertex-to-cluster assignments

» Alternately repeat the two steps until convergence

= Guaranteed to converge to a local minimum of the
objective function

YAHOO!



Experiments on synthetic data with planted clustering

q = level of noise, |L| = number of labels,

K = number of ground truth clusters
0.45 |-|—B-c3 LCBMAM&AM*:‘

0.6 0.8
0.7
0.5 -
0.35 - 0.6
0.5
0.3 0.4
= = ~ oa
0.25
0.3 - 03 T
0.2 0.2
0.15 0.2 0.1
002 0025 003 0.035 004 0045 0 5 10 15 20
g Il
37000
21000
32000

50 100 150 200 250 300 350
K
—_--."-______'.-.-““I-'-If’.

cost

0.025 0,03 0035 0,04 0.045
q

e X \\km::h
12000
1] 5 10 15
ILI

50 100 1500 200 250 300 350
K

YAHOQO!



Experiments on real data

cost

dataset B CB LCB AM
String 163 305 160060 155881 156976
Youtube | 23550213 18956000 22644858 19670899
DBLP 2260065 1633149 1678714 2018952

runtime (secs)
dataset B CB LCB AM
String 1.95 214 502 82.07
Youtube | 5.89 6.78 16.15 273.36
DBLP 1.79 189 523 886.79

#clusters
dataset B CB LCB AM
String 1086 1451 784 1451

Youtube 568 1078 672 1078
DBLP 66276 123197 99948 123197

103 YAHOQ!
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Extension: multi-chromatic correlation clustering
(to appear)

= object relations can be expressed by more than one label
= |.e., the input to our problem is an edge-labeled graph whose

edges may have multiple labels.

= Extending chromatic correlation clustering by:

1.

allowing to assign a set of labels to each cluster (instead of
a single label)

measuring the intra-cluster label homogeneity by means of
a distance function between sets of labels

YAHOO!



From chromatic correlation clustering
to multi-chromatic correlation clustering

= Chromatic correlation clustering:

» Set of objects V ={vi,...,vn}
» Pairwise labeling function !V xV = LU {lo}
» Clustering C:V —- N
» Cluster labeling function cl :ClV] = L
cost(C, cf) :Z(l [[l(z,y) = cl(C(x))] —|—Z [[0(x,y)#lo).
(z,y)EV XV, (z,y)eV xV,
C(x)=C(y) C(x)#C(y)

» Multi-chromatic correlation clustering:
» Pairwise labeling function 0:Vy — 2L U {ZO}
, Distance between set of labels d : 2Ly {lo} x 2Ly {lo} — RT
» Cluster labeling function ¢/ : C[V] — 2F

ost(GLC.cl) = Y dy(f clClx))+ > de(l(x.y).{lo})
(z,y)€Va, (z,y)EVa,
C(x)=C(y) C(z)#C(y)

105 YAHOQ!



= As distance between sets of labels we adopt
Hamming distance

de(L1,Lo) = |Ly \ Lo| + |Lo \ Ly

= A consequence is that inter-cluster edges cost the
number of labels they have plus one

de(U(x,y), {lo}) = [z, y)|+1,¥(z,y) € E

YAHOO!



Multi-chromatic pivot

= Pick randomly a pivot (x,y)
= Add all vertices 2 such that ¢(x,y) = ¢(x,z) = {(y, z)
= The cluster is assigned the set of colors ¢(x,y)

= approximation guarantee 6/L/(D-1)

» where D is the maximum degree

YAHOO!



Online correlation clustering

C. Mathieu, O. Sankur, W. Schudly:
Online correlation clustering
STACS 2010
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Online correlation clustering

= Vertices arrive one by one.
= The size of the input is unknown.

= Upon arrival of a vertex v, an online algorithm can
» Create a new cluster {v}.
» Add v to an existing cluster.
» Merge any pre-existing clusters.

» Split a -extstig cluster

YAHOO!



Main results

= An online algorithm is c-competitive if on any input /, the
algorithm outputs a clustering ALG()) s.t.
profit(CALG(l)) >c - profit(OPT(]))

where OPT(]) is the offline optimum.

= Main results:
» MINDISAGREE is hopeless: O(n)-competitive and this is proved optimal.

» For MAXAGREE
» Greedy 0.5-competitive
 No algorithm can be better than 0.834-competitive
e (0.5+c)-competitive randomized algorithm

0.5 0.834 1

feasible
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Algorithm 1 Algorithm GREEDY

Upon arrival of vertex v do
Put v in new cluster {v}.
while 3 clusters C, D s.t. merging C and D improves the profit do
Merge C and D
end while
end for

YAHOO!
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= |If profit(OPT) < (1 - a)/E/, GREEDY has competitive ratio > 0.5
= |IDEA: design an algorithm with competitive ratio > 0.5 when
profit(OPT) > (1 — @)/E/] 1DDENSE

Algorithm 2 GREEDYORDENSE

With probability p, run GREEDY,
With probability 1 — p, run DENSE.

» GREEDYORDENSE is (0.5 + €£)-competitive.

YAHOO!
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Algorithm Dense

Reminder: focus on instances where profit(OPT) > (1 — a)/E/
Fix 7T=1.1

When new vertices arrive put them in a singleton cluster

At times tj = T'

Compute (near) OPT(t)

Merge clusters as explained next

YAHOO!



= Suppose we start with OPT at time t1.
= Until time t2, we put all new vertices to singletons.

—
oy

115
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= At time t2, we run the merging procedure.
= First, compute OPT(t2).
= Then try to recreate OPT(t2).

A

2z

A, NN
\.—-""\ / \
/
{

vV \

116

- - - - OPT(ty)

OPT(t;)
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= Clusters at the previous step, that are more than half covered
by a cluster in the new optimal clustering are merged in the

cluster.
AE
Al\ \/,— -\\
/.f""\\, \
l }

A‘l"”d’d’f/ — \ I‘,- \
/
, \l l , f‘r;;
Ag,—l\ 1N/ e - - - _OPT(ty)
\ /l OPT(t>)
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= Bl and B2 are kept as ghost clusters.

= At time 3, the new optimal cluster are compared to the ghost
clusters at the previous step

YAHOO!



= Bl and B2 are kept as ghost clusters.

= At time 3, the new optimal cluster are compared to the ghost
clusters at the previous step




Main results

= An online algorithm is c-competitive if on any input /, the
algorithm outputs a clustering ALG()) s.t.
profit(CALG(l)) >c - profit(OPT(]))

where OPT(]) is the offline optimum.

= Main results:
» MINDISAGREE is hopeless: O(n)-competitive and this is proved optimal.

» For MAXAGREE
» Greedy 0.5-competitive
 No algorithm can be better than 0.834-competitive
e (0.5+c)-competitive randomized algorithm

0.5 0.834 1

feasible
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Bipartite correlation clustering

N. Ailon, N. Avigdor-Elgrabli, E. Liberty, A. van Zuylen
Improved Approximation Algorithms for Bipartite Correlation Clustering
ESA 201



Correlation bi-clustering

daniel Bolwin

Daniel Baldwin i"‘\#&

Daniel Baldwin =\

Alec Baldwin

alec boldwin

actor Alec Baldwin \

william baldwin

/\'

__'l
s

Baldwin Stephen

Stefen boldwin —_—
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Correlation bi-clustering

Users - ltems
Raters - Movies
B-cookies - User_Id
Web Queries - URLS

YAHOO!
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Input for correlation bi-clustering

'

.(

o

Q-

The input is an undirected unweighted bipartite graph.

YAHOO!



Output of correlation bi-clustering

The output is a set of bi-clusters.

YAHOO!
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Cost of a correlation bi-clustering solution

The cost is the number of erroneous edges.

YAHOO!



PivotBiCluster

O
@) N
® %@
O \\o
O e
O O
e e

Consider the following graph

YAHOQO!



PivotBiCluster

Choose /1 uniformly at random from the left side.

YAHOO!



PivotBiCluster

Add the neighborhood of ¢; to the cluster

YAHOO!



PivotBiCluster

For each other node on the left (/) do the following:

YAHOO!



PivotBiCluster

w.p. min(|Ry2|/|Rz|,1) add /5 to the cluster if |Ri 2| > |Ry|.

YAHOO!



PivotBiCluster

Here /5 joins the cluster because R; > > Ry.

YAHOO!



PivotBiCluster

Let's consider another example

YAHOO!



PivotBiCluster

Let's consider another example

YAHOO!
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PivotBiCluster

Since |Ry12|/|R2| = 1/2 with probability 1/2 we decide what to do with ¢,

YAHOO!



PivotBiCluster

(g 2 (_,-:}{::__::__ _—._—._________________'_'____ 40__\\']
—
T — —— _O y,

Since |Ry 2| < |Ry| that decision should be to make /> a singleton
Otherwise (w.p. 1/2) we decide nothing about /5 and continue.

YAHOO!
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PivotBiCluster

o
O
/ 1 @
O
@- &
O @

We remove the clustered nodes from the graph and repeat.

YAHOO!



PivotBiCluster

= Let OPT denote the best possible bi-clustring of G.
= Let B be a random output of PivotBiCluster.
= Then:

E[cost(B)] <4cost(OPT)

» Let's see how to prove this...

YAHOO!
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Tuples, bad events, and violated pairs

'e 2 Otﬂ?\ﬁt_‘:;-—ﬂ__ O}“ R2

-

" T ——— E:
Fos _— \"|
- ==
— [
e

g |
o T T
== — \_
1 O FLv]2
-\-\_-\_\_ —— T
e - |
- —_— ~
Q T T T ' |
— £

O e

A “bad event” (X7) happens to tuple T = ({1,02, R, R12, R2).

YAHOO!



Tuples, bad events, and violated pairs

We “blame” bad event X7 for the violated (red) pairs, E[cost(T)|X7] = 3.

140 YAHOO I



Tuples, bad events, and violated pairs

= Since every violated pair can be blamed on (or colored by) one
bad event happening we have:

]EBNP;'votBiCluster [COSt(B)] < Z aT - E[COSt( T)|XT]
T

where gT denotes the probability that a bad event happened to
tuple T.

= Note: the number of tuples is exponential in the size of the
graph.

141 YAHOQ!
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Proof sketch

We have (previous slide)

ALG < " qr - E[cost(T)|Xr]
T

Write the dual linear program

OPT > Z 3(T) s.t. constrains on 3(T)
T

Set a feasible solution 3(T) < qrf(T).
B Show that:

E[cost(T)|Xt] + E[cost(TﬂXT] < AMF(T)+F(T))
Which gives

ALG < qr -E[cost(T)[Xr] <4 qrf(T)<4 OPT
T T

YAHOO!



Clustering aggregation

A. Gionis, H. Mannila, P. Tsaparas
Clustering aggregation
ICDE 2004 & TKDD
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Clustering aggregation

= Many different clusterings for the same dataset!

» Different objective functions
» Different algorithms
» Different number of clusters

= Which clustering is the best?

» Aggregation: we do not need to decide, but rather find a
reconciliation between different outputs

YAHOO!



The clustering-aggregation problem

= |nput
» N objects V ={viv2..,vn}
» m clusterings of the objects CJ,....Cm

= Qutput

» a single partition C, that is as close as possible to all input
partitions

= How do we measure closeness of clusterings?
» disagreement distance

YAHOO!



Disagreement distance

' 1 1fCl(u,) — Cl(b‘) and CQ(LL) 75 CQ(U),
du‘l_,(cl, Cg) = 4 or Cl(ﬂ,) 75 Cl(b‘) and CQ(L{) = Cz(b’),
0 otherwise.

dy(C1,C2) = ) duu(C1,Ca).

(u,0)eV xV
u |C | P
xX; |7 7
X, |7 2 B
w1z 17 d(C,P) =3
X, |3 |3
Xs |3 | 4

YAHOO!



Clustering aggregation

Problem 1 (Clustering Aggregation). Given a set of objects V and m clus-
terings Cq, ...,C,, on V, compute a new clustering C that minimizes the total
number of disagreements with all the given clusterings, that is, it minimizes

m

D) =) dv(C;,0).
=1

YAHOO!



Why clustering aggregation?

= Clustering categorical data

U City Profession Nationality
X; New York Doctor U.S.

X, | New York Teacher Canada

Xz | Boston Doctor U.S.

x, | Boston Teacher Canada

Xs | Los Angeles Lawer Mexican

Xg | Los Angeles Actor Mexican

= The two problems are equivalent

YAHOO!



Why clustering aggregation?

Clustering heterogenous data

» E.g., imcomparable numeric attributes

|dentify the correct number of clusters

» the optimization function does not require an explicit number of clusters

Detect outliers

» outliers are defined as points for which there is no consensus

Improve the robustness of clustering algorithms
» different algorithms have different weaknesses.
» combining them can produce a better result.

Privacy preserving clustering

» different companies have data for the same users. They can compute an

aggregate clustering without sharing the actual data.
YAHOQ!



Clustering aggregation

Correlation clustering with fractional similarities
satisfying triangle inequality

Ci C2 Cs
U1 1 1 1
V2 1 2 2
U3 2 1 1
v 2 2 2
vs 3 3 3
Ve 3 4 3

= Yahoo Confidential & Proprietary YAHOO!



Metric property for disagreement distance

= d(CC) =0

= J(C,C)=0 for every pair of clusterings C, C’
= d(CC) =d(C,O)

* Triangle inequality?

= [t is sufficient to show that for each pair of points x,y
eV:dxy(ClLC3)<dxy(CIl,C2) + dxy(C2,C3)

= dx,y takes values O/1; triangle inequality can only be
violated when

adx,y(CI1,C3) =1 and dx,y(CIl,C2)= 0O and dx,y(C2,C3) = O

» |s this possible?

YAHOO!



A S-approximation algorithm

» The BALLS algorithm:

» Sort points in increasing order of weighted degree

» Select a point x and look at the set of points B within distance 2 of
X

» If the average distance of x to B is less than /4 then create the
cluster BA X}

» Otherwise, create a singleton cluster {x}
» Repeat until all points are exhausted

= The BALLS algorithm has approximation factor 3

YAHOO!
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Other algorithms

= Picking the best clustering among the input clusterings,
provides 2(1-1/m) approximation ratio.
» However, the runtime is O(m~2n)

= Aijlon et al. (STOC 2005) propose a similar pivot-like algorithm
(for correlation clustering) that for the case of similarity
satisfying triangle inequality gives an approximation ratio of 2.

= For the specific case of clustering aggregation they show that
chosing the best solution between their algorithm and the best
of the input clusterings, yelds a solution with expected
approximation ratio of 11/7.

YAHOO!



Part Ill:
Scalability for real-world instances

David Garcia-Soriano
Yahoo Lalbs, Barcelona



Application 1: B-cookie de-duplication

B = Awork

SID = Andre

[\

B = Alaptop

B = AS_home

\

SID = Steffi

B =S.work

m Each visit to Yahoo sites is tied to a browser B-cookie.
m We also know the hashed Yahoo IDs (SIDs) of users who are logged in.
®m Many-many relationship between B-cookies and SIDs.

Problem
How to identify the set of distinct users and/or machines?

YAHOO!



Application 1: B-cookie de-duplication (I1)

m Data for a few days may occupy tens of Gbs and contain hundreds of
millions of cookies/SIDs.

® |t is stored across multiple machines.

YAHOO!



Application 1: B-cookie de-duplication (I1)

m Data for a few days may occupy tens of Gbs and contain hundreds of
millions of cookies/SIDs.

® |t is stored across multiple machines.

® We have developed a general distributed and scalable framework for
correlation clustering in Hadoop.

® The problem may be modeled as correlation bi-clustering, but we choose
to use standard CC for scalability reasons.

YAHOO!



B-cookie de-duplication: graph construction

We build a weighted graph of B-cookies.

Assing a (multi)set SIDs(B) to each B-cookie.

The weight (similarity) of edge By <> B; is

» |SIDs(By) N SIDs(B,)|

W(B1,Bg) = -J(SIDS(B1)7 SIDS(Bg)) = |S/DS(B1) 0 SIDS(BQ)|

€ [0,1].

® We use correlation clustering to find £ : V — N minimizing

ST JBLB)+ Y. [1-J(Bi,B)].

£(By)7#4(B2) £(B1)=£(Bz)

YAHOO!



Application 2 (under development): Yahoo Mail

Spam detection

® Spammers tend to send groups of groups emails very similar contents.
m Correlation clustering can be applied to detect them.

S p—

YAHOO! MAIL
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How is the graph given?

How fast we can perform correlation clustering depends on how the edge
information is accessed.
For simplicity we describe the case of 0-1 weights.

1. Neighborhood oracles: given v € V, return its positive neighbours:
Ef(v)y={weV]|(v,w)ec E'}.

2. Pairwise queries: given a pair v, w € V, determine if (v, w) € E*.

YAHOO!



Part 1: CC with neighborhood oracles



Constructing neighborhood oracles

m Easy if the input is the graph of positive edges explicitly given.
m QOtherwise, locality sensitive hashing may be used for certain distance
metrics such as Jaccard similarity.

® This technique involves computing a set #, of hashes for each node v
based on its features, and building an inverted index.

® Given a node v, we can retrieve the nodes whose similarity with v
exceeds a certain threshold by inspecting the nodes w with
H(w) NH(v) # 0.

YAHOO!



Large-scale correlation clustering with neighborhood oracles

m We show a system that achieves an expected 3-approximation
guarantee with a small number of MapReduce rounds.

m A different approach with high-probability bounds has been developed by
Chierichetti, Dalvi and Kumar: Correlation Clustering in MapReduce,
KDD’14 (Monday 25th, 2pm).

YAHOO!



Running time of Pivot with neighborhood oracles

Algorithm Pivot

while V # 0 do
v < uniformly random node from V
Create cluster C, = {v} U E*(v)
V<« V\C
ET+— ETNn(VxV)

® Recall that Pivot attains an expected 3-approximation.
B |ts running time is O(n+ m*), i.e., linear in the size of the positive graph.
m Later we'll see that a certain variant runs in O(n®/?), regardless of m™".

YAHOO!



Running time of Pivot (ll)

Observe that if the input graph can be partitioned into a set of cliques, Pivot
actually runs in O(n).

YAHOO!



Running time of Pivot (ll)

Observe that if the input graph can be partitioned into a set of cliques, Pivot
actually runs in O(n).

Can it be faster than O(n + m) if the graph is just close to a union of cliques?

YAHOO!



Running time of Pivot (llI)
Theorem (Ailon and Liberty, ICALP’09)

The expected running time of Pivot with a neighborhood oracle is
O(n+ OPT), where OPT is the cost of the optimal solution.

YAHOO!



Running time of Pivot (llI)

Theorem (Ailon and Liberty, ICALP’09)

The expected running time of Pivot with a neighborhood oracle is
O(n+ OPT), where OPT is the cost of the optimal solution.

Proof:

® Each edge from a center either captures a cluster element or disagrees
with the final clustering C.

® There are at most n— 1 edges of the first type, and cost(C) < 3 - OPT of
the second.

YAHOO!



So where’s the catch?

® The algorithm needs Q(n) memory to store the set of pivots found so far
(including singleton clusters.)

® |tis inherently sequential (needs to check if the new candidate pivot has
connections to previous ones).

® We would like to be able to create many clusters in parallel.

YAHOO!



Running Pivot in parallel

Observation #1: after fixing a random vertex permutation =, Pivot becomes
deterministic.

Algorithm Pivot

m < random permutation of V
for v € V by order of = do
if v is smaller than all of E*(v) according to 7 then
Create cluster C, = {v}U E*(v) # visacenter, ET(v) are spokes
V<« V\C
ET + ETNn(VxV)

YAHOO!



Running Pivot in parallel

Observation #1: after fixing a random vertex permutation =, Pivot becomes
deterministic.

Algorithm Pivot

m < random permutation of V
for v € V by order of = do
if v is smaller than all of E*(v) according to 7 then
Create cluster C, = {v}U E*(v) # visacenter, ET(v) are spokes
V<« V\C
ET + ETNn(VxV)

Observation #2: If a vertex comes before all its neighbours (in the order
defined by =), it is a cluster center. We can find them in parallel in one round.

YAHOO!



Running Pivot in parallel

Observation #1: after fixing a random vertex permutation =, Pivot becomes
deterministic.

Algorithm Pivot

m < random permutation of V
for v € V by order of = do
if v is smaller than all of E*(v) according to 7 then
Create cluster C, = {v}U E*(v) # visacenter, ET(v) are spokes
V<« V\C
ET + ETNn(VxV)

Observation #2: If a vertex comes before all its neighbours (in the order
defined by =), it is a cluster center. We can find them in parallel in one round.

Observation #3: We should remove remove edges as soon as possible, i.e.,
when we know for sure whether or not a vertex is a cluster center.

YAHOO!



Example: clustering a line

—2—3—(9—5—(6e—(n—Ca—(9—(o—(ii
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Example: clustering a line

}2 3—4—5—6—7—8— 9— 10 — 11
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Example: clustering a line

}2 t4 5—6—7— 8— 9 — 10 — 11
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Example: clustering a line

}2 t4 ts 7— 8— 9 — 10 — 11
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Example: clustering a line

}2 t4 te ts 9 — 10 — 11
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Example: clustering a line

® 0 -0 -0 : O -
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Example: clustering a line

®:-:0:6:0:0°0
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Example: clustering a line

®:0 ©:-0:0°0

® |f r = id, a single cluster of size 2 is found per round = [n/2] rounds.
® But 7 was chosen at random!

YAHOO!



Clustering a line: random permutation
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Clustering a line: random permutation
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Clustering a line: random permutation
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Clustering a line: random permutation

s @@
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Clustering a line: random permutation (I1)

Some intuition:
® For a line, we expect to find 1/3 of the vertices to be pivots in the first
round.
® The "longest dependency chain“ has expected size O(log n).

® Thus we expect to cluster the line in about log n rounds.

YAHOO!



Pseudocode for ParallelPivot

Pick a random bijection 7 : V — | V| # 7 encodes a random vertex permutation

c=0 # Cis the set of vertices known to be cluster centers
S=0 # S is the set of vertices known not to be cluster centers
E=E*n{G))| =) < =()} # Only keep “+” edges respecting the permutation order
while CU S # V do
# For each round, pick pivots in parallel and update C, S and E.
forie V\ (CuU S)do
# I's status is unknown
N() = {j € V| (i,)) € E}
if N(i) = 0 then
# i has no smaller neighbour left; it is a cluster center.
# Also, none of the remaining neighbours of i is a center (but they may be assigned to another center).
Cc=Ccu{i}
S = SUN()
E=E\ E({i} U N(i)

# Remaining neighbourhood of i

®m Each vertex can be a cluster center or a spoke (attached to a center).
® When a vertex finds out about its own status, it notifies its neighbours.
m QOtherwise it asks about the status of the neighbours it needs to know.
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ParallelPivot: analysis

We obtain the exact same clustering that Pivot would find for a given vertex
permutation 7. Hence the same approximation guarantees hold.

The ith round (iteration of the while loop) requires O(n + m;) work, where
m; = |E™| is the number of edges remaining (which is strictly decreasing).

Question: How many rounds before termination?

YAHOO!



Pivot and Maximal Independent Sets (MISs)

Focus on the set of cluster centers found:

Algorithm Pivot

7 < random permutation of V
C+ 10
for v € Vin order of = do
if v has no earlier neighbours in C then
C«+ CuU{v}
Cv={vIUE*(v) # v is a center, E*(v) are spokes
V<« V\C

m Cis an independent set. there are no edges between two centers.

® |tis also maximal: cannot be extended by adding more vertices to C.

® Finding set of pivots = finding a lexicographically smallest MIS (after
applying ).
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Lexicographically Smallest MIS

® The lexicographically smallest MIS is P-hard to compute [Cook’'67].
® This means that it is very unlikely to be parallelizable.
® Bad news?

YAHOO!



Lexicographically Smallest MIS

The lexicographically smallest MIS is P-hard to compute [Cook’'67].
This means that it is very unlikely to be parallelizable.
Bad news?

Recall that 7 is not an arbitrary permutation, but was chosen at random.

For this case, a result of Luby (STOC’85) implies that the number of
rounds of Pivot is O(log n) in expectation. v/

YAHOO!



MapReduce implementation details

® Each round of ParallelPivot uses two MapReduce jobs.

®m Each vertex uses key-value pairs to send messages to its neighbours
whenever it discovers that it is/isn’t a cluster center.

® These two rounds do not need to be separated.

YAHOO!



B-cookie de-duplication: some figures

® We take data for a few weeks.
® The graph can be built in 3 hours.

m Qur system computes a high-quality clustering in 25 minutes, after 12
Map-Reduce rounds.

® The average number of erroneous edges per vertex (in the CC measure)
is less than 0.2.

® The maximum cluster size is 68 and the average size among
non-singletons is 2.89.

® For a complete evaluation we wold need some ground truth data.

YAHOO!



Part 2: CC with pairwise queries



Correlation clustering with pairwise queries

Pairwise queries are useful when we don’t have an explicit input graph.

YAHOO!



Correlation clustering with pairwise queries

Pairwise queries are useful when we don’t have an explicit input graph.

Problem
Making all (g) pairwise queries may be too costly to compute or store.

Can we get approximate solutions with fewer queries?
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Correlation clustering with pairwise queries

Pairwise queries are useful when we don’t have an explicit input graph.

Problem
Making all (g) pairwise queries may be too costly to compute or store.
Can we get approximate solutions with fewer queries?

Constant-factor approximations require Q(n?) pairwise queries...

YAHOO!



Query complexity/accuracy tradeoff

Theorem
With a “budget” of q queries, we can find a clustering C with

cost(C) < 3- OPT + ”—: in time O(nq).
This is nearly optimal.

YAHOO!



Query complexity/accuracy tradeoff

Theorem
With a “budget” of q queries, we can find a clustering C with

cost(C) < 3- OPT + ”—: in time O(nq).
This is nearly optimal.

We call this a (3, ) approximation (where ¢ = 1).

Restating, we can find a (3, £)-approximtion in time O(n/e).
This allows to find good clusterings up to a fixed an accuracy threshold e.

We can use this result about pairwise queries to give a faster
O(1)-approximation algorithm for neighborhood queries that runs in
o(n*/?).

This result is a consequence of the existence of local algorithms for
correlation clustering.

Bonchi, Garcia-Soriano, Kutzkov: Local correlation clustering,
arXiv:1312.5105.
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Local correlation clustering (LCC)

Definition

A clustering algorithm A is said to be local with time complexity t if having
oracle access to any graph G, and taking as input | V(G)| and a vertex

v € V(G), A returns a cluster label A%(v) in time O(t). Algorithm A implicitly
defines a clustering, described by the labelling £(v) = A%(v).

m Each vertex queries t edges.
® Qutputs a label identifying its own cluster in time O(t).
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LCC — explicit clustering

An LCC algorithm can output a explicit clustering by:

1. Computing £(v) for each v in time O(t);

2. Putting together all vertices with the same label ¢ (in O(n)).
Total time: O(nt).
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LCC — explicit clustering

An LCC algorithm can output a explicit clustering by:
1. Computing £(v) for each v in time O(t);
2. Putting together all vertices with the same label ¢ (in O(n)).

Total time: O(nt).
In fact we can use LCC to cluster the part of the graph we’re interested in
without having to cluster the whole graph.

YAHOO!



LCC — Local clustering reconstruction

Queries of the form “are x, y in the same cluster”? can be answered in time
o(t).

® How: compute ¢(x) and £(y) in O(t), and check for equality.
® No need to partition the whole graph!
|

This is is like “correcting” the missing/extraneous edges in the input data
on the fly.

It fits into the paradigm of “property-preserving data reconstruction”
(Ailon, Chazelle, Seshadhri, Liu’08).
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LCC — Distributed clustering

The computation can be distributed:
1. We can assign vertices to diffent processors.
2. Each processor computes £(v) in time O(t).
3. All processors must share the same source of randomness.
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LCC — Streaming clustering

Edge streaming model: edges arrive in arbitrary order.

1. For a fixed random seed, the set of v’s neighbours the LCC can query
has size at most 2'.

2. This set can be compute before any edge arrives.

3. We only need to store O(n- 2') edges (this can be improved further.)

This has applications in clustering dynamic graphs.
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LCC — Quick cluster edit distance estimators

The cluster edit distance of a graph is the smallest number of edges to
change for it to admit a perfect clustering (i.e., a union of cliques).
Equivalently, it is the cost of the optimal correlation clustering.

® We can estimate the cluster edit distance by sampling random pairs of
vertices and checking whether ¢(v) = ¢(w).
® This also gives property testers for clusterability.

® This allows us to quickly reject instances where even the optimal
clustering is too bad.

® Another application may be in quickly evaluating the impact of decisions
of a clustering algorithm.

YAHOO!



Local correlation clustering: results

Theorem

Givene € (0,1), a (3, e)-approximate clustering can be found locally in time
O(1/¢) per vertex, (after O(1/€*) preprocessing.) Moreover, finding an
(O(1), e)-approximation with constant success probability requires Q(1/¢)
queries.

This is particularly useful where the graph contains a relatively small number
of “dominant” clusters.
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Local correlation clustering: algorithm

Algorithm LocalCluster(v,¢)

P + FindGoodPivots(e)
return FindCluster(v, P)

Algorithm FindCluster(v, P)

if v ¢ ET(P) then
return v
else
i« min{j|veET(P)};
return P;
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Algorithm FindGoodPivots(e)

for i € [16] do

P' + FindPivots(e/12);

d’ « estimate of the cost of P with O(1/<) local clustering calls
j <+ argmin{d' | i € [16]}
return P/

Algorithm FindPivots(e)

Q + random sample of O(1/¢) vertices.
P + [] (empty sequence)
forve Qdo
if FindCluster(v, P) = v then
append v to P
return P
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Part IV:
Challenges and directions
for future research

Edo Liberty
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Future challenges

Can we have efficient algorithms for weighted or partial graphs
with provable approximation guaranties?

In practice, greedy algorithms work very well but provably fail
sometimes. Can we characterize when that happens?

Practically solving Correlation Clustering problems in large
scale is still a challenge.

Better conversion and representation of data as graphs will
enable fast and efficient clustering.

Can we develop machine learned pairwise similarities that can
support neighborhood queries over sets of objects?

YAHOO!



Thank youl!
Questions?
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