
Greedy	Minimization	of	Weakly	
Supermodular Set	Functions	

Edo	Liberty	(Amazon)
Maxim	Sviridenko (Yahoo)



High	level	view

1. Machine	learning	involves	optimization
2. Often,	minimizing a	set	function with	cardinality	constraints
3. Many	of	which	are	weakly	supermodular
4. A	greedy	extension	algorithm works	well	for	those
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K-Means
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Sparse	Regression

such	that

• Bi-criteria	– [Natarajan	95]
• NP	hard	– [Foster,	Karloff,	Thaler 15]
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Sparse	Regression
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Columns	Subset	Selection
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+
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• [Deshpande,	Rademacher 10]		
• [Boutsidis,	Drineas,	Magdon-Ismail	14]

2XS W X

F

�



Sparse	Multiple	Linear	Regression
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Sparse	Convex	Function	Minimization

min
x

R(x) such	that | supp(x)|  k

• [Shalev-Shwartz,	Srebro,	Zhang	10]



Weak	Supermodularity

Definition 1. A set function f(S) : 2[n] ! R+ which is

• Non-negative - f(S) � 0

• non-increasing - f(S) � f(S [ T )

is said to be weakly-↵-supermodular if there exists ↵ � 1
such that for any two sets S, T ✓ [n]

f(S)� f(S [ T )  ↵
X
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Weak	Supermodularity

9i 2 T \ S s.t. � � �

↵|T \ S|

f(S [ T )

|S [ T ||S| |S|+ 1 f(S)
f(S [ {i})�

�



Weakly	Supermodular Problems
Problem alpha

k-medians 1

k-means 1

Sparse	Regression

Column	subset	Selection

Sparse	Multiple	Linear	Regression

Sparse	Convex	Function	Minimization
(for strongly	convex	and					smooth)

maxS0 kX+
S0k22
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Greedy	algorithms	and	Sub/Supermodularity

• Nemhauser,	Wolsey,	Fisher	78	
• approx for	greedy	algorithm	on	maximizing	supermodular functions
• approx using																																				

• Das,	Kempe	11	
• Define	submodulairy-ratio	which	is	analogues	to	our	alpha
• Give	guaranties	and	bicriteria for	maximization	problem

• Folklore
• Supermodular Minimization							Submodular	Maximization
• Approximation	for	Supermodular Minimization	can	be	NP	hard.
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Lemma 1. Let S⌧ be the output of the greedy algorithm. Then |S⌧ |  |S0| +
d↵k ln⇤⌧e and f(S⌧ )  f(S⇤) + f(S0)�f(S⇤)

⇤⌧+1
where S⇤

is an optimal solution of

the optimization problem.



Analysis
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i2[n]
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= ↵k · (f(St�1)� f(St)) .

By rearranging the above equation and recursing over t we get

f(St)� f(S⇤
)  (f(St�1)� f(S⇤

)) (1� 1/↵k)

 (f(S0)� f(S⇤
)) (1� 1/↵k)t

Substituting ⌧ + 1 > d↵k ln⇤⌧+1e completes the proof



Weak	Supermodularity
|S [ T ||S| |S|+ 1 f(S)
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�
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Every	element	added	cuts	the	distance	to															by	fractionf(S⇤) (1� 1/↵k)



• this	is	instance	of	Algorithm	1	with	

• Then	we	have	

• And
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• Where k0 = min |S0| such that f(S0)  f 0



Recipe	for	New	Bi-Criteria	algorithms

• Bound	alpha	for	your	problem
• Generate										such	that																																								using	a	
known					-approximation	algorithm.
• Use	the	given	greedy	extension	algorithm

• output
• Such	that
• and		

S0 f(S0)/f(S⇤)  ⇢

|St|  |S0|+ d↵k ln(⇢/")e
St

f(St) < (1 + ")f(S⇤)

⇢
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Sparse	Multiple	Linear	Regression
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Sparse	Regression
w
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y 2XS

Natarajan’s	analysis	gets	

Simply	by	invoking	Algorithm	3 |S| 
⇠
k↵ ln

kyk22 � E/4

E � E/4

⇡


⇠
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⇡



Columns	Subset	Selection

Initialing,	for	example,	with	[Boutsidis,	Drineas,	Magdon-Ismail	14]	
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f(S)  (1 + ")f(S⇤) and |S| = O(↵k ln(1/"))

Previous	results	required	polynomial	dependence	on	epsilon



Sparse	Convex	Function	Minimization

This	reproves	Theorem	2.8	in	[Shalev-Shwartz,	Srebro,	Zhang	10]



Take	home	message

1. Machine	learning	involves	optimization
2. Often,	minimizing a	set	function with	cardinality	constraints
3. Many	of	which	are	weakly	supermodular
4. A	greedy	extension	algorithm works	well	for	those


