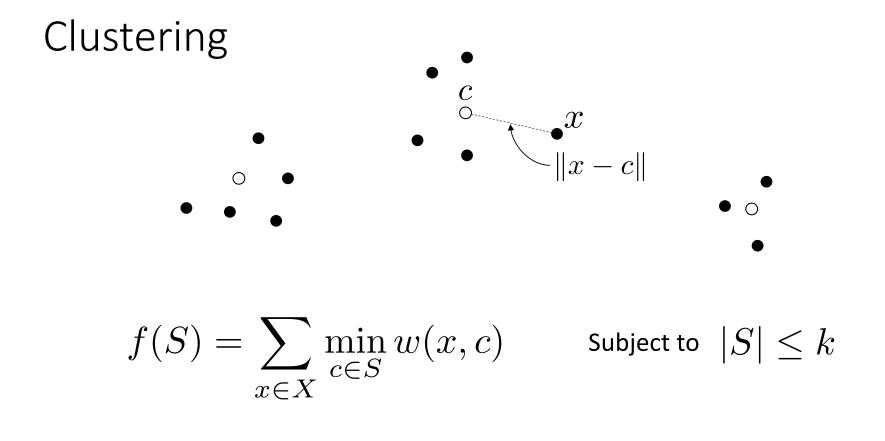
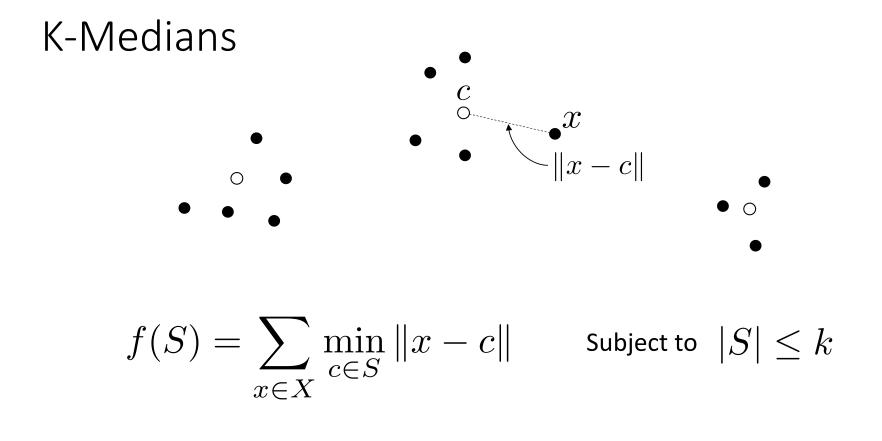
Greedy Minimization of Weakly Supermodular Set Functions

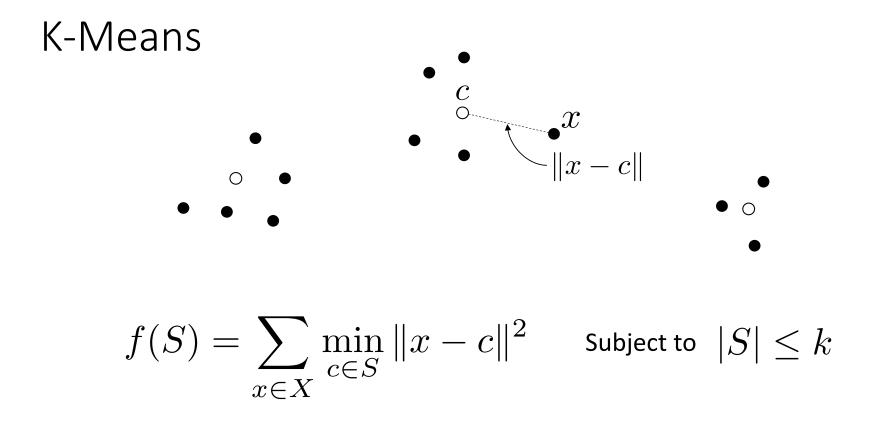
Edo Liberty (Amazon) Maxim Sviridenko (Yahoo)

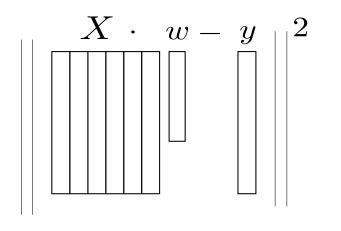
High level view

- 1. Machine learning involves **optimization**
- 2. Often, minimizing a set function with cardinality constraints
- 3. Many of which are weakly supermodular
- 4. A greedy extension algorithm works well for those





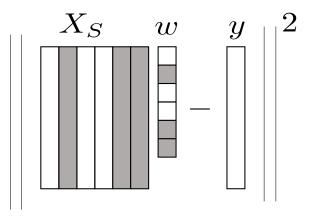




 $\min_{w} \|Xw - y\|^2 \text{ such that } |\operatorname{supp}(w)| \le k$

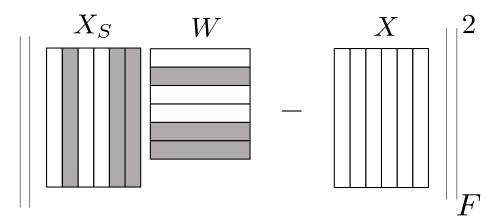
- Bi-criteria [Natarajan 95]
- NP hard [Foster, Karloff, Thaler 15]

Sparse Regression



$$f(S) = \|X_S X_S^+ y - y\|^2 \quad \text{Subject to} \quad |S| \leq k$$

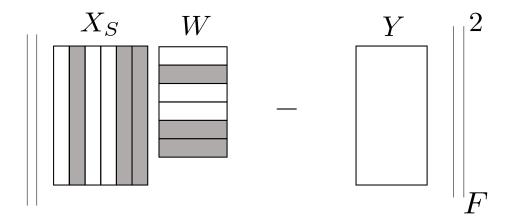
Columns Subset Selection



$$f(S) = \|X_S X_S^+ X - X\|_F^2 \quad \text{Subject to} \quad |S| \leq k$$

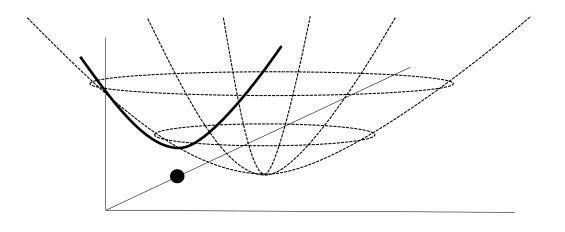
- [Deshpande, Rademacher 10]
- [Boutsidis, Drineas, Magdon-Ismail 14]

Sparse Multiple Linear Regression



 $f(S) = \|X_S X_S^+ Y - Y\|_F^2 \quad \text{ Subject to } \ |S| \leq k$

Sparse Convex Function Minimization



 $\min_x R(x) \quad \text{such that} \quad |\operatorname{supp}(x)| \leq k$

• [Shalev-Shwartz, Srebro, Zhang 10]

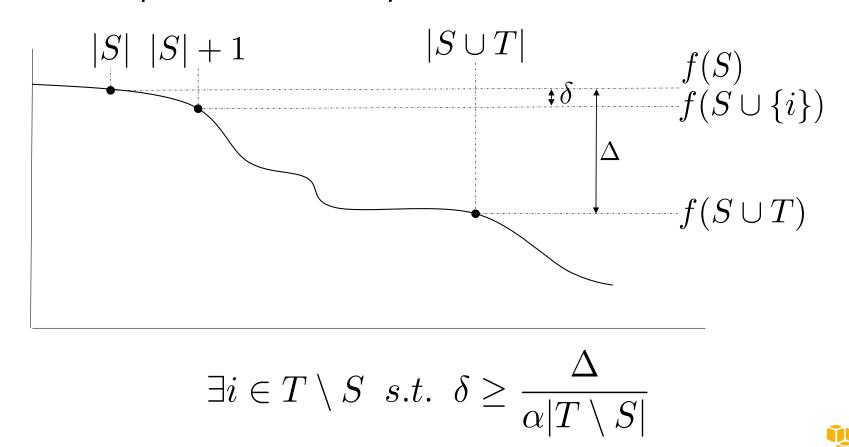
Weak Supermodularity

Definition 1. A set function $f(S): 2^{[n]} \to \mathbb{R}_+$ which is

- Non-negative $f(S) \ge 0$
- non-increasing $f(S) \ge f(S \cup T)$

is said to be weakly- α -supermodular if there exists $\alpha \geq 1$ such that for any two sets $S, T \subseteq [n]$

$$f(S) - f(S \cup T) \le \alpha \sum_{i \in T \setminus S} \left(f(S) - f(S \cup \{i\}) \right)$$



Weak Supermodularity

Weakly Supermodular Problems

Problem	alpha
k-medians	1
k-means	1
Sparse Regression	$\max_{S'} \ X_{S'}^+\ _2^2$
Column subset Selection	$\max_{S'} \ X_{S'}^+\ _2^2$
Sparse Multiple Linear Regression	$\max_{S'} \ X_{S'}^+\ _2^2$
Sparse Convex Function Minimization (for λ strongly convex and β smooth)	eta/λ

Ĩ.

Greedy algorithms and Sub/Supermodularity

- Nemhauser, Wolsey, Fisher 78
 - (1-1/e) approx for greedy algorithm on maximizing supermodular functions
 - $(1-\varepsilon)$ approx using $|S| \le k \log(1/\varepsilon)$
- Das, Kempe 11
 - Define submodulairy-ratio which is analogues to our alpha
 - Give guaranties and bicriteria for maximization problem
- Folklore
 - Supermodular Minimization \neq Submodular Maximization
 - Approximation for Supermodular Minimization can be NP hard.

Algorithm 1 Greedy Extension Algorithm input: Weakly- α -supermodular function f(S), initial set S_0 , parameters $k \in \mathbb{Z}_+$ and the sequence $\Lambda_1, \Lambda_2, \ldots$ while $t \leq \lceil \alpha k \ln \Lambda_t \rceil$ do $S_t \leftarrow S_{t-1} \cup \arg\min_{i \in [n]} f(S_{t-1} \cup \{i\})$ output: S_t

Lemma 1. Let S_{τ} be the output of the greedy algorithm. Then $|S_{\tau}| \leq |S_0| + \lceil \alpha k \ln \Lambda_{\tau} \rceil$ and $f(S_{\tau}) \leq f(S^*) + \frac{f(S_0) - f(S^*)}{\Lambda_{\tau+1}}$ where S^* is an optimal solution of the optimization problem.

Analysis

$$f(S_{t-1}) - f(S^{*}) \leq f(S_{t-1}) - f(S_{t-1} \cup S^{*})$$

$$\leq \alpha \cdot \sum_{i \in S^{*} \setminus S_{t-1}} f(S_{t-1}) - f(S_{t-1} \cup \{i\})$$

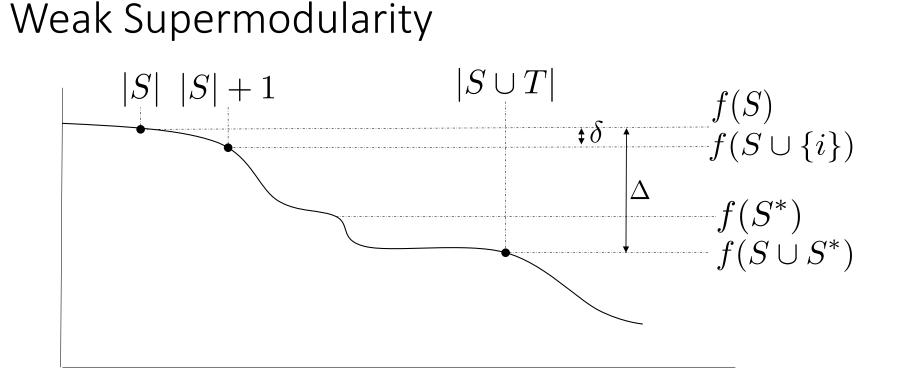
$$\leq \alpha k \cdot \max_{i \in [n]} f(S_{t-1}) - f(S_{t-1} \cup \{i\})$$

$$= \alpha k \cdot (f(S_{t-1}) - f(S_{t})) .$$

By rearranging the above equation and recursing over t we get

$$f(S_t) - f(S^*) \le (f(S_{t-1}) - f(S^*)) (1 - 1/\alpha k)$$
$$\le (f(S_0) - f(S^*)) (1 - 1/\alpha k)^t$$

Substituting $\tau + 1 > \lceil \alpha k \ln \Lambda_{\tau+1} \rceil$ completes the proof



Every element added cuts the distance to $f(S^*)$ by fraction $(1 - 1/\alpha k)$

Algorithm 2 Greedy Extension Algorithminput: Weakly- α -supermodular function f(S), initial set $S_0, k \in \mathbb{Z}_+$ while $t \leq \lceil \alpha k \ln (f(S_0) / \varepsilon f(S_{t-1})) \rceil$ do $S_t \leftarrow S_{t-1} \cup \arg\min_{i \in [n]} f(S_{t-1} \cup \{i\})$ output: S_t

- this is instance of Algorithm 1 with $\Lambda_t = f(S_0) / \varepsilon f(S_{t-1})$
- Then we have $f(S_{\tau}) \leq f(S^*)/(1-\varepsilon)$

• And
$$|S_t| \le |S_0| + \lceil \alpha k \ln(\frac{1}{\varepsilon} \frac{f(S_0)}{f(S^*)}) \rceil$$

Algorithm 3 Greedy Extension Algorithm; an alternative stopping criterion

input: Weakly- α -supermodular function f, S_0, f_{stop} **repeat**

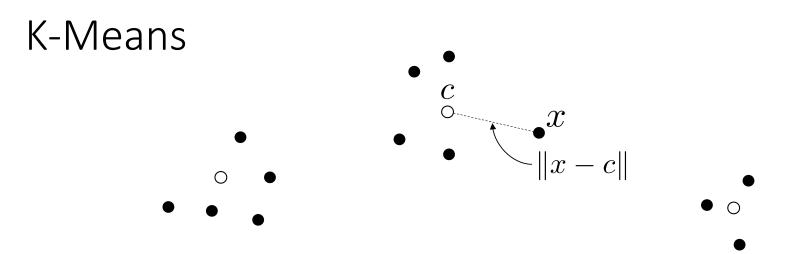
 $S_t \leftarrow S_{t-1} \cup \arg\min_i f(S_{t-1} \cup \{i\})$ until $f(S_t) \leq f_{stop}$ output: $S = S_t$

• He have
$$|S| \le |S_0| + \left\lceil \alpha k' \left(\ln \frac{f(S_0) - f'}{f_{\text{stop}} - f'} \right) \right\rceil$$

• Where $k' = \min |S'|$ such that $f(S') \le f'$

Recipe for New Bi-Criteria algorithms

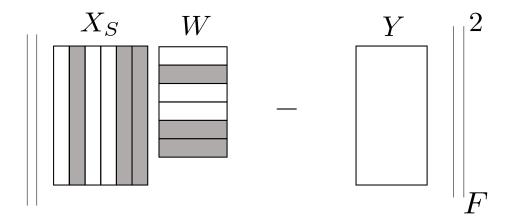
- Bound alpha for your problem
- Generate S_0 such that $f(S_0)/f(S^*) \leq \rho$ using a known ρ -approximation algorithm.
- Use the given greedy extension algorithm
- output S_t
- Such that $|S_t| \leq |S_0| + \lceil \alpha k \ln(\rho/\varepsilon) \rceil$
- and $f(S_t) < (1+\varepsilon)f(S^*)$



▶ Lemma 8. For the constrained k-means problem, one can find in $O(n^2 dk \log(1/\varepsilon))$ time a set S of size $|S| = O(k) + k \log(1/\varepsilon)$ such that $f(S) \leq (1 + \varepsilon)f(S^*)$ where $f(S^*)$ is the optimal solution.

▶ Lemma 12. Let $f(S^*)$ be the optimal solution to the unconstrained k-means problem. One can find in time $O(n^{O(\log(1/\varepsilon)/\varepsilon^2)}dk)$ a set $S \in \mathbb{R}^d$ of size $|S| = O(k) + k \log(1/\varepsilon)$ such that $f(S) \leq (1+\varepsilon)f(S^*)$.

Sparse Multiple Linear Regression

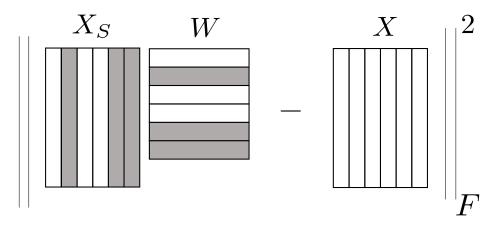


► Lemma 13. For $X \in \mathbb{R}^{m \times n}$ and $Y \in \mathbb{R}^{m \times \ell}$ the SMLR minimization function $f(S) = \|Y - X_S X_S^+ Y\|_F^2$ is α -weakly-supermodular with $\alpha = \max_{S'} \|X_{S'}^+\|_2^2$.

Simply by invoking Algorithm 3

$$|S| \le \left\lceil k\alpha \ln \frac{\|y\|_2^2 - E/4}{E - E/4} \right\rceil \le \left\lceil \frac{4}{3}k\alpha \ln \frac{\|y\|_2^2}{E} \right\rceil$$

Columns Subset Selection

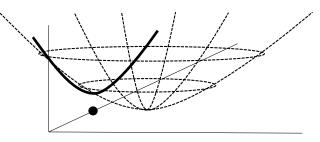


Initialing, for example, with [Boutsidis, Drineas, Magdon-Ismail 14]

$$f(S) \le (1+\varepsilon)f(S^*)$$
 and $|S| = O(\alpha k \ln(1/\varepsilon))$

Previous results required polynomial dependence on epsilon

Sparse Convex Function Minimization



▶ Theorem 19. Given the set function f(S) defined in (6) corresponding to β -smooth λ -strongly convex function R(w). The set function f(S) is α -weakly-supermodular with $\alpha = \frac{\beta}{\lambda}$.

▶ Theorem 20. For any $\varepsilon > 0$, let $f_{stop} = R^* + \varepsilon$ then the Algorithm 3 outputs S such that

$$|S| \leq \left\lceil \frac{\beta}{\lambda} k_f \left(\ln \frac{R(\emptyset) - R^*}{\varepsilon} \right) \right\rceil.$$

This reproves Theorem 2.8 in [Shalev-Shwartz, Srebro, Zhang 10]

Take home message

- 1. Machine learning involves optimization
- 2. Often, minimizing a set function with cardinality constraints
- 3. Many of which are **weakly supermodular**
- 4. A greedy extension algorithm works well for those

