
Randomized algorithms for the low-rank
approximation of matrices
Edo Liberty†, Franco Woolfe‡, Per-Gunnar Martinsson§, Vladimir Rokhlin†¶, and Mark Tygert‡¶

†Department of Computer Science and ‡Program in Applied Math, Yale University, 51 Prospect Street, New Haven, CT 06511; and §Department of Applied
Math, University of Colorado, 526 UCB, Boulder, CO 80309-0526

Contributed by Vladimir Rokhlin, October 11, 2007 (sent for review October 5, 2007)

We describe two recently proposed randomized algorithms for the
construction of low-rank approximations to matrices, and demon-
strate their application (inter alia) to the evaluation of the singular
value decompositions of numerically low-rank matrices. Being
probabilistic, the schemes described here have a finite probability
of failure; in most cases, this probability is rather negligible (10�17

is a typical value). In many situations, the new procedures are
considerably more efficient and reliable than the classical (deter-
ministic) ones; they also parallelize naturally. We present several
numerical examples to illustrate the performance of the schemes.

matrix � SVD � PCA

Low-rank approximation of linear operators is ubiquitous in
applied mathematics, scientific computing, numerical anal-

ysis, and a number of other areas. In this note, we restrict our
attention to two classical forms of such approximations, the
singular value decomposition (SVD) and the interpolative de-
composition (ID). The definition and properties of the SVD are
widely known; we refer the reader to ref. 1 for a detailed
description. The definition and properties of the ID are sum-
marized in Subsection 1.1 below.

Below, we discuss two randomized algorithms for the con-
struction of the IDs of matrices. Algorithm I is designed to be
used in situations where the adjoint A* of the m � n matrix A
to be decomposed can be applied to arbitrary vectors in a ‘‘fast’’
manner, and has CPU time requirements typically proportional
to k�CA* � k�m � k2�n, where k is the rank of the approximating
matrix, and CA* is the cost of applying A* to a vector. Algorithm
II is designed for arbitrary matrices, and its CPU time require-
ment is typically proportional to m�n�log(k) � k2�n. We also
describe a scheme converting the ID of a matrix into its SVD for
a cost proportional to k2�(m � n).

Space constraints preclude us from reviewing the extensive
literature on the subject; for a detailed survey, we refer the
reader to ref. 2. Throughout this note, we denote the adjoint of
a matrix A by A*, and the spectral (l2-operator) norm of A by
�A�2; as is well known, �A�2 is the greatest singular value of A.
Furthermore, we assume that our matrices have complex entries
(as opposed to real); real versions of the algorithms under
discussion are quite similar to the complex ones.

This note has the following structure: Section 1 summarizes
several known facts. Section 2 describes randomized algorithms
for the low-rank approximation of matrices. Section 3 illustrates
the performance of the algorithms via several numerical exam-
ples. Section 4 contains conclusions, generalizations, and possi-
ble directions for future research.

Section 1: Preliminaries
In this section, we discuss two constructions from numerical
analysis, to be used in the remainder of the note.

Subsection 1.1: Interpolative Decompositions. In this subsection, we
define interpolative decompositions (IDs) and summarize their
properties.

The following lemma states that, for any m � n matrix A of

rank k, there exist an m � k matrix B whose columns constitute
a subset of the columns of A, and a k � n matrix P, such that

1. some subset of the columns of P makes up the k � k identity
matrix,

2. P is not too large, and
3. Bm�k�Pk�n � Am�n.

Moreover, the lemma provides an approximation

Bm�k�Pk�n � Am�n [1]

when the exact rank of A is greater than k, but the (k � 1)st
greatest singular value of A is small. The lemma is a reformu-
lation of theorem 3.2 in ref. 3 and theorem 3 in ref. 4; its proof
is based on techniques described in refs. 5–7. We will refer to the
approximation in formula 1 as an ID.

Lemma 1. Suppose that m and n are positive integers, and A is a
complex m � n matrix.

Then, for any positive integer k with k � m and k � n, there exist
a complex k � n matrix P, and a complex m � k matrix B whose
columns constitute a subset of the columns of A, such that

1. some subset of the columns of P makes up the k � k identity
matrix,

2. no entry of P has an absolute value greater than 1,
3. �Pk�n�2 � �k�n � k� � 1,
4. the least (that is, the kth greatest) singular value of P is at least 1,
5. Bm�k�Pk�n � Am�n when k � m or k � n, and
6. when k � m and k � n,

�Bm�k�Pk�n � Am�n�2 � �k�n � k� � 1�k�1, [2]

where �k�1 is the (k � 1)st greatest singular value of A.

Properties 1, 2, 3, and 4 in Lemma 1 ensure that the interpo-
lative decomposition BP of A is numerically stable. Also, prop-
erty 3 follows directly from properties 1 and 2, and property 4
follows directly from property 1.

Observation 1. Existing algorithms for the construction of the matrices
B and P in Lemma 1 are computationally expensive (see sections 3 and
4 of ref. 5). We use the algorithm of ref. 4 to produce matrices B and
P which satisfy somewhat weaker conditions than those in Lemma
1. We construct B and P such that

1. some subset of the columns of P makes up the k � k identity
matrix,

2. no entry of P has an absolute value greater than 2,

Author contributions: E.L., F.W., P.-G.M., V.R., and M.T. designed research; E.L., F.W.,
P.-G.M., V.R., and M.T. performed research; E.L., F.W., P.-G.M., V.R., and M.T. contributed
new reagents/analytic tools; E.L., F.W., P.-G.M., V.R., and M.T. analyzed data; and E.L., F.W.,
P.-G.M., V.R., and M.T. wrote the paper.

The authors declare no conflict of interest.

¶To whom correspondence may be addressed. E-mail: vladimir.rokhlin@yale.edu or
mark.tygert@yale.edu.

© 2007 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0709640104 PNAS � December 18, 2007 � vol. 104 � no. 51 � 20167–20172

A
PP

LI
ED

M
A

TH
EM

A
TI

CS



3. �Pk�n�2 � �4k�n � k� � 1,
4. the least (that is, the kth greatest) singular value of P is at least 1,
5. Bm�k�Pk�n � Am�n when k � m or k � n, and
6. when k � m and k � n,

�Bm�k�Pk�n � Am�n�2 � �4k�n � k� � 1�k�1, [3]

where �k�1 is the (k � 1)st greatest singular value of A.

For any positive real number �, the algorithm can identify the least
k such that �B P � A�2 � �. Furthermore, the algorithm computes
both B and P using at most

CID � ��k �m �n �log�n�� [4]

floating-point operations, typically requiring only

C	ID � ��k �m �n� . [5]

Subsection 1.2: A Class of Random Matrices. In this subsection, we
describe a class 
 of structured random matrices that will be used
in Section 2. A matrix � belongs to 
 if it consists of uniformly
randomly selected rows of the product of the discrete Fourier
transform matrix and a random diagonal matrix. Matrices of this
type have been introduced in ref. 8 in a slightly different context.

Suppose that l and m are positive integers, such that l � m.
Suppose further that D is a complex diagonal m � m matrix
whose diagonal entries d1, d2, . . . , dm are independent and
identically distributed (i.i.d.) complex random variables, each
distributed uniformly over the unit circle. Suppose in addition
that F is the complex m � m matrix defined by the formula

Fj,k � exp��2� i� j � 1��k � 1� /m� , [6]

with i � ��1. Suppose moreover that S is a real l � m matrix
whose entries are all zeros, aside from a single 1 in row j of
column sj for j � 1, 2, . . . , l, where s1, s2, . . . , sl are i.i.d. integer
random variables, each distributed uniformly over {1, 2, . . . , m}.
Suppose finally that � is the l � m matrix defined by the formula

�l�m � Sl�m�Fm�m�Dm�m. [7]

Then, the cost of applying � to an arbitrary complex vector via
the algorithm of ref. 9 is

Cm,l � ��m�log(l�). [8]

The algorithm of ref. 9 is based on the fast Fourier transform,
and is quite efficient in practical applications (in addition to
having the attractive asymptotic CPU time estimate in formula 8).

Remark 1. The integers s1, s2, . . . , sl used above in the construction
of S from formula 7 are drawn uniformly with replacement from {1,
2, . . . , m}. Our implementations indicate that the algorithms of this
note yield similar accuracies whether s1, s2, . . . , sl are drawn with
or without replacement. However, drawing with replacement sim-
plifies the analysis of these algorithms (see ref. 10).

Section 2: Description of the Algorithms
In this section, we describe two numerical schemes for approx-
imating a matrix A with a low-rank matrix in the form of an ID.
We also describe a procedure for converting an ID into an SVD.

The first scheme—Algorithm I—is meant to be used when
efficient procedures for applying the matrix A and its adjoint A*
to arbitrary vectors are available; it is more reliable and paral-
lelizable than the classical power and Lanczos algorithms, and is
often more efficient. Algorithm I is described in Subsection 2.1
below.

The second scheme—Algorithm II—deals with the case when
A is specified by its entire collection of entries; it is more efficient

and parallelizable than the classical ‘‘QR’’ decomposition,
power, and Lanczos algorithms used in current numerical prac-
tice. Algorithm II is described in Subsection 2.2 below.

Subsection 2.4 describes an efficient procedure for calculating
the SVD of A given an ID of A produced by either Algorithm I
or Algorithm II.

Subsection 2.1: Algorithm I. In this subsection, we describe an
algorithm for computing an approximation to a matrix A in the
form of an ID. The algorithm is efficient when the matrix A* can
be applied rapidly to arbitrary vectors. A detailed analysis of the
algorithm of this subsection can be found in ref. 11.

Suppose that k, l, m, and n are positive integers with k � l, such
that l � m and l � n. Suppose further that A is a complex m �
n matrix. Suppose in addition that R is a complex l � m matrix
whose entries are i.i.d., each distributed as a complex Gaussian
random variable of zero mean and unit variance.

Then, with very high probability whenever l � k is sufficiently
large, the following procedure constructs a complex m � k
matrix B whose columns consist of a subset of the columns of A,
and a complex k � n matrix P, such that some subset of the
columns of P makes up the k � k identity matrix, no entry of P
has an absolute value greater than 2, and

�Bm�k�Pk�n � Am�n�2 � �k�1, [9]

where �k�1 is the (k � 1)st greatest singular value of A. Thus, BP
is an ID approximating A.

The algorithm has three steps:

1. Form the product

Yl�n � Rl�m�Am�n. [10]

2. Using the algorithm of Observation 1, collect k appropriately
chosen columns of Y into a complex l � k matrix Z, and
construct a complex k � n matrix P, such that some subset of
the columns of P makes up the k � k identity matrix, no entry
of P has an absolute value greater than 2, and

�Zl�k�Pk�n � Yl�n�2 � 	k�1, [11]

where 	k�1 is the (k � 1)st greatest singular value of Y.
3. Due to Step 2, the columns of Z constitute a subset of the

columns of Y. In other words, there exists a finite sequence
i1, i2, . . . , ik of integers such that, for any j � 1, 2, . . . , k, the
jth column of Z is the ijth column of Y. Collect the corre-
sponding columns of A into a complex m � k matrix B, so that,
for any j � 1, 2, . . . , k, the jth column of B is the ijth column
of A.

If we define CA* to be the cost of applying A* to a vector, then
Step 1 costs l�CA* f loating-point operations. Obviously, Step 2
costs �(k�l�n�log(n)) operations (see Observation 1). Step 3
consists of moving k�m complex numbers from one location in
memory to another, and hence costs �(k�m) operations.

In all, the algorithm costs at most

CI � l �CA* � ��k �m � k �l �n �log�n�� [12]

f loating-point operations, and (as seen from formula 5) typically
costs

C	I � l �CA* � ��k �m � k �l �n� . [13]

Remark 2. The estimate in formula 13 is based on the assumption
that the entries of the matrix A are available at no cost. Sometimes,
an algorithm for the application of A to arbitrary vectors is
available, but one has no access to individual entries of A. In such
cases, the k columns of A required by Algorithm I above can be

20168 � www.pnas.org�cgi�doi�10.1073�pnas.0709640104 Liberty et al.



obtained by applying A to an appropriately chosen collection of
vectors, for a cost of k�CA, with CA denoting the cost of applying A
to a vector. Under these conditions, formula 13 becomes

C 
I � l �CA* � k �CA � ��k �l �n� . [14]

Remark 3. Obviously, the algorithm of this subsection has a positive
probability PI

fail of failure. The behavior of PI
fail as a function of l �

k is investigated in detail in ref. 11, where the concept of failure for
algorithms of this type is defined; ref. 11 gives upper bounds on PI

fail

which are complicated but quite satisfactory. For example, l � k �
20 results in PI

fail � 10�17, and l � k � 8 results in PI
fail � 10�5.

Our numerical experience indicates that the bounds given in ref. 11
are reasonably tight.

Subsection 2.2: Algorithm II. In this subsection, we describe a
modification of Algorithm I for computing an ID approximation
to an arbitrary m � n matrix A; the modified algorithm does not
need a ‘‘fast’’ scheme for the application of A and A* to vectors.
A detailed analysis of the algorithm of this subsection can be
found in ref. 10.

The modified algorithm, Algorithm II, is identical to Algo-
rithm I of Subsection 2.1, but with the random matrix R used in
formula 10 replaced with the matrix � defined in formula 7. With
this modification, the three-step algorithm of Subsection 2.1
remains a satisfactory numerical tool for the construction of IDs
of matrices.

Now, Step 1 requires applying � to each column of A, for a
total cost of �(n�m�log(l)) f loating-point operations (see formula
8). Steps 2 and 3 cost �(k�l�n�log(n)) and �(k�m) operations
respectively, being identical to Steps 2 and 3 of Algorithm I.

In all, the modified algorithm costs at most

CII � ��m �n �log� l� � k �l �n �log�n�� [15]

f loating-point operations, and (as seen from formula 5) typically
costs

C	II � ��m �n �log� l� � k �l �n� . [16]

Remark 4. As with Algorithm I of the preceding subsection, the
algorithm of this subsection has a positive probability of failure, to
be denoted by PII

fail. The behavior of PII
fail as a function of k and l is

investigated in ref. 10, where the concept of failure for algorithms
of this type is defined; the estimates in ref. 10 are considerably
weaker than the behavior observed experimentally. Specifically, ref.
10 shows that PII

fail is less than C�k2/l, where C is a positive constant
independent of the matrix A; in practice, the failure rate of
Algorithm II is similar to that of Algorithm I. This discrepancy is
a subject of intensive investigation.

Subsection 2.3: Adaptive Versions of Algorithms I and II. As described
in the preceding two subsections, Algorithms I and II require a
priori knowledge of the desired rank k of the approximations.
This limitation is easily eliminated. Indeed, one can apply
Algorithm I or II with k set to some more or less arbitrary
number (such as 2, or 20, or 40), and then keep doubling k until
the obtained approximation attains the desired precision. The
algorithm described in Appendix provides an efficient means for
estimating the precision of the obtained approximations. It is
easy to see that knowing the desired rank k in advance reduces
the cost of constructing the approximation by at most a factor of 2.

The authors have implemented such adaptive versions of both
algorithms; in many cases the CPU time penalty is considerably
less than a factor of 2. Moreover, much of the data can be reused

from one value of k to another, further reducing the penalty.
Such modifications are in progress.

Subsection 2.4: From ID to SVD. In this subsection, we describe a
procedure for converting an ID into an SVD. A similar method
enables the construction of the Schur decomposition of a matrix
from its ID (see, for example, theorem 7.1.3 and the surrounding
discussion in ref. 1 for a description of the Schur decomposition).

Suppose that k, m, and n are positive integers with k � m and
k � n, B is a complex m � k matrix, and P is a complex k � n
matrix. Then, the following four steps compute a complex m �
k matrix U whose columns are orthonormal, a complex n � k
matrix V whose columns are orthonormal, and a real diagonal
k � k matrix � whose entries are all nonnegative, such that

Bm�k�Pk�n � Um�k��k�k��V*�k�n. [17]

The four steps are:

1. Construct a ‘‘QR’’ decomposition of P*, i.e., form a complex
n � k matrix Q whose columns are orthonormal, and a
complex upper-triangular k � k matrix R, such that

�P*�n�k � Qn�k�Rk�k, [18]

for a cost of �(n�k2) (see, for example, chapter 5 in ref. 1).

2. Form the complex m � k matrix S via the formula

Sm�k � Bm�k��R*�k�k, [19]

for a cost of �(m�k2).

3. Form an SVD of S

Sm�k � Um�k��k�k��W*�k�k, [20]

where U is a complex m � k matrix whose columns are
orthonormal, W is a complex k � k matrix whose columns are
orthonormal, and � is a real diagonal k � k matrix whose
entries are all nonnegative. The cost of this step is �(m�k2)
(see, for example, chapter 8 in ref. 1).

4. Form the complex n � k matrix V via the formula

Vn�k � Qn�k�Wk�k, [21]

for a cost of �(n�k2).

The four steps above compute the SVD in formula 17 of the
matrix BP for a cost of

CIDfSVD � ���m � n� �k2� . [22]

Combining the algorithm of this subsection and the algorithm of
Subsection 2.2 yields an algorithm for computing an SVD
approximation to an arbitrary matrix for a total cost of

CII
SVD � ��m �n �log� l� � k �l �n �log�n� � �m � n� �k2� . [23]

Similarly, combining the algorithm of this subsection and the
algorithm of Subsection 2.1 yields an algorithm for computing an
SVD approximation to a matrix A when both A and A* can be
applied rapidly to arbitrary vectors; however, in this case there
exists a more direct algorithm yielding slightly better accuracy
(see ref. 11).

Section 3: Numerical Examples
In this section, we describe several numerical tests of the
algorithms discussed in this note.

Subsections 3.1 and 3.2 illustrate the performance of Algo-
rithms I and II, respectively. Subsection 3.3 illustrates the per-

Liberty et al. PNAS � December 18, 2007 � vol. 104 � no. 51 � 20169

A
PP

LI
ED

M
A

TH
EM

A
TI

CS



formance of the combination of Algorithm II with the four-step
algorithm of Subsection 2.4.

The algorithms were implemented in Fortran 77 in double-
precision arithmetic, compiled using the Lahey/Fujitsu Express
v6.2 compiler with maximum optimization, and run on one core
of a 1.86 GHz Intel Centrino Core Duo microprocessor with 2
MB of L2 cache and 1 GB of RAM. To perform the fast Fourier
transforms required by Algorithm II, we used a double-precision
version of P.N. Swarztrauber’s FFTPACK library.

Subsection 3.1: Algorithm I. This subsection reports results of
applying Algorithm I to matrices A given by the formula

A �
�100

��100�2
�

1
v2 �c�cT, [24]

where c is the v2 � 1 column vector whose entries are all ones,
and � is the standard five-point discretization of the Laplacian
on a v � v uniform grid; in other words, all of the diagonal entries
of � are equal to �4, �p,q � 1 if the grid points p and q are
neighbors, and all other entries of � are zeros (see, for example,
section 8.6.3 in ref. 12). Thus, A is an n � n matrix, with n � v2.

The results of this set of tests are summarized in Table 1; the
contents of the columns in Table 1 are as follows:

Y n is the dimensionality of the n � n matrix A.
Y k is the rank of the matrix approximating A.
Y l is the first dimension of the l � m matrix R from formula 10,

with m � n.
Y �k�1 is the (k � 1)st greatest singular value of A, that is, the

spectral norm of the difference between A and the best rank-k
approximation to A.

Y 
 is the spectral norm of the difference between the original
matrix A and its approximation obtained via the algorithm of
Subsection 2.1.

Y t is the CPU time (in seconds) taken both to compute the
approximation to A via the algorithm of Subsection 2.1, and to
check the accuracy of the approximation via the algorithm of
Appendix.

The entries for 
 in Table 1 display the maximum values
encountered during 30 trials; the entries for t display the average
values over 30 trials. Each of the trials was run with an
independent realization of the matrix R in formula 10.

Subsection 3.2: Algorithm II. This subsection reports results of
applying Algorithm II to the 4,096 � 4,096 matrix A defined via
the formula

A4096�4096 � U4096��k�20����k�20���k�20���V*��k�20��4096, [25]

with the matrices �, U, and V defined as follows.
The matrix U was constructed by applying the Gram–Schmidt

process to the columns of a 4,096 � (k � 20) matrix whose entries
were i.i.d. centered complex Gaussian random variables; the
matrix V was obtained via an identical procedure. The matrix �
is diagonal, with the diagonal entries �j,j � 10�15�(j�1)/(k�1) for j �
1, 2, . . . , k, and �j,j � 10�15 for j � k � 1, k � 2, . . . , k � 20.
Obviously, the jth greatest singular value �j of A is �j,j for j � 1,
2, . . . , k � 20; the rest of the singular values of A are zeros.

For the direct algorithm, we used a pivoted ‘‘QR’’ decompo-
sition algorithm based upon plane (Householder) reflections,
followed by the algorithm of ref. 4.

The results of this set of tests are summarized in Table 2; the
contents of the columns in Table 2 are as follows:

Y k is the rank of the matrix approximating A.
Y l is the first dimension of the l � m matrix � from formula 7,

with m � 4,096.
Y �k�1 is the (k � 1)st greatest singular value of A, that is, the

spectral norm of the difference between A and the best rank-k
approximation to A.

Y 
direct is the spectral norm of the difference between the
original matrix A and its approximation obtained via the
algorithm of ref. 4, using a pivoted ‘‘QR’’ decomposition
algorithm based upon plane (Householder) reflections.

Y 
 is the spectral norm of the difference between the original
matrix A and its approximation obtained via the algorithm of
Subsection 2.2.

Y tdirect is the CPU time (in seconds) taken to compute the
approximation to A via the algorithm of ref. 4, using a pivoted
‘‘QR’’ decomposition algorithm based upon plane (House-
holder) reflections.

Y t is the CPU time (in seconds) taken both to compute the
approximation to A via the algorithm of Subsection 2.2, and to
check the accuracy of the approximation via the algorithm of
Appendix.

Y tdirect/t is the factor by which the algorithm of Subsection 2.2 is
faster than the classical algorithm that we used.

The entries for 
 in Table 2 display the maximum values
encountered during 30 trials; the entries for t display the average
values over 30 trials. Each of the trials was run with an
independent realization of the matrix � in formula 7.

Subsection 3.3: SVD of an Arbitrary Matrix. This subsection reports
results of applying the algorithm of Subsection 2.2 and then the
algorithm of Subsection 2.4 to the 4,096 � 4,096 matrix A defined
in formula 25.

For the direct algorithm, we used a pivoted ‘‘QR’’ decompo-
sition algorithm based upon plane (Householder) reflections,
followed by the divide-and-conquer SVD routine dgesdd from
LAPACK 3.1.1.

Table 1. ID (via Algorithm I) of the n � n matrix A defined
in formula 24

n k l �k�1 
 t

400 96 104 0.504E-16 0.380E-14 0.53E0
1,600 384 392 0.513E-16 0.974E-14 0.91E1
3,600 864 872 0.647E-16 0.181E-13 0.58E2
6,400 1,536 1,544 0.649E-16 0.289E-13 0.24E3

400 48 56 0.277E-08 0.440E-07 0.30E0
1,600 192 200 0.449E-08 0.145E-06 0.43E1
3,600 432 440 0.457E-08 0.210E-06 0.24E2
6,400 768 776 0.553E-08 0.346E-06 0.92E2

10,000 1,200 1,208 0.590E-08 0.523E-06 0.12E3

Table 2. ID (via Algorithm II) of the 4,096 � 4,096 matrix A defined in formula 25

k l �k�1 
direct 
 tdirect t tdirect/t

8 16 0.100E-15 0.359E-14 0.249E-14 0.31E1 0.27E1 1.1
56 64 0.100E-15 0.423E-14 0.369E-14 0.18E2 0.31E1 5.6

248 256 0.100E-15 0.309E-14 0.147E-13 0.77E2 0.70E1 11
1,016 1,024 0.100E-15 0.407E-14 0.571E-13 0.32E3 0.11E3 2.8

20170 � www.pnas.org�cgi�doi�10.1073�pnas.0709640104 Liberty et al.



The results of this set of tests are summarized in Table 3; the
contents of the columns in Table 3 are as follows:

Y k is the rank of the matrix approximating A.
Y l is the first dimension of the l � m matrix � from formula 7,

with m � 4,096.
Y �k�1 is the (k � 1)st greatest singular value of A, that is, the

spectral norm of the difference between A and the best rank-k
approximation to A.

Y 
direct is the spectral norm of the difference between the
original matrix A and its approximation obtained via a pivoted
‘‘QR’’ decomposition algorithm based upon plane (House-
holder) reflections, followed up with a call to the divide-and-
conquer SVD routine dgesdd from LAPACK 3.1.1.

Y 
 is the spectral norm of the difference between the original
matrix A and its approximation obtained via the algorithm of
Subsection 2.2, followed by the algorithm of Subsection 2.4.

Y tdirect is the CPU time (in seconds) taken to compute the
approximation to A via a pivoted ‘‘QR’’ decomposition algo-
rithm based upon plane (Householder) reflections, followed
by a call to the divide-and-conquer SVD routine dgesdd from
LAPACK 3.1.1.

Y t is the CPU time (in seconds) taken both to compute the
approximation to A via the algorithm of Subsection 2.2,
followed by the algorithm of Subsection 2.4, and to check the
accuracy of the approximation via the algorithm of Appendix.

Y tdirect/t is the factor by which the algorithm of Subsection 2.2,
followed by the algorithm of Subsection 2.4, is faster than the
classical algorithm that we used.

The entries for 
 in Table 3 display the maximum values
encountered during 30 trials; the entries for t display the average
values over 30 trials. Each of the trials was run with an
independent realization of the matrix � in formula 7.

Subsection 3.4: Observations. The following observations can be
made from the numerical experiments described in this section,
and are consistent with the results of more extensive experi-
mentation performed by the authors:

Y The CPU times in Tables 1–3 are compatible with the esti-
mates in formulae 14, 16, and 23.

Y The precision produced by each of Algorithms I and II is
similar to that provided by formula 3, even when �k�1 is close
to the machine precision.

Y Algorithms I and II, as well as the classical pivoted ‘‘QR’’
decomposition algorithms, all yield results of comparable
accuracies.

Y Algorithm II runs noticeably faster than the classical ‘‘dense’’
schemes, unless the rank of the approximation is nearly full, or
is less than 6 or so.

Y Algorithms I and II are remarkably insensitive to the quality
of the pseudorandom number generators used.

Section 4: Conclusions
This note describes two classes of randomized algorithms for the
compression of linear operators of limited rank, as well as
applications of such techniques to the construction of singular
value decompositions of matrices. Obviously, the algorithms of
this note can be used for the construction of other matrix

decompositions, such as the Schur decomposition. In many
situations, the numerical procedures described in this note are
faster than the classical ones, while ensuring comparable accuracy.

Whereas the results of numerical experiments are in reason-
ably close agreement with our estimates of the accuracy of
Algorithm I, our numerical experiments indicate that Algorithm
II performs better than our estimates guarantee. Comfortingly,
the verification scheme of Appendix provides an inexpensive
means for determining the precision of the approximation
obtained during every run. If (contrary to our experience)
Algorithm II were to produce an approximation that were less
accurate than desired, then one could run the algorithm again
with an independent realization of the random variables in-
volved, in effect boosting the probability of success at a reason-
able additional expected cost.

It should be pointed out that although Algorithm II cannot
perform worse than our bounds guarantee, it actually performs
much better in practice. In fact, Algorithm II yields accuracies
similar to those of Algorithm I. This discrepancy is currently a
subject of intensive investigation.

Furthermore, there is nothing magical about the random
matrix defined in formula 7. We have tested several classes of
random matrices that are faster to apply, and that (in our
numerical experience) perform at least as well in terms of
accuracy. However, our theoretical bounds for the matrix de-
fined in formula 7 are the strongest that we have obtained to
date.

To summarize, the randomized algorithms described in this
note are a viable alternative to classical tools for the compression
and approximation of matrices; in many situations, the algo-
rithms of this note are more efficient, reliable, and parallelizable.
Their applications in several areas of scientific computing are
under investigation.

Appendix: Estimating the Spectral Norm of a Matrix
In this appendix, we describe a method for the estimation of the
spectral norm of a matrix A. The method does not require access
to the individual entries of A; it requires only applications of A
and A* to vectors. It is a version of the classical power method.
Its probabilistic analysis summarized below was introduced fairly
recently in refs. 13 and 14. This appendix is included here for
completeness.

Suppose that m and n are positive integers, and A is a complex
m � n matrix. We define � to be a complex n � 1 column vector
with independent and identically distributed entries, each dis-
tributed as a complex Gaussian random variable of zero mean
and unit variance. We define �̃ to be the complex n � 1 column
vector �̃ � �/���2. For any integer j � 1, we define pj(A) by the
formula

pj�A� � � ��A*A�j�̃�2

��A*A�j�1�̃�2
, [26]

which is the estimate of the spectral norm of A produced by j
steps of the power method, starting with the vector �̃ (see, for
example, ref. 14).

A somewhat involved analysis shows that the probability that

Table 3. SVD (via Algorithm II) of the 4,096 � 4,096 matrix A defined in formula 25

k l �k�1 
direct 
 tdirect t tdirect/t

8 16 0.100E-15 0.580E-14 0.128E-13 0.31E1 0.22E1 1.4
56 64 0.100E-15 0.731E-14 0.146E-13 0.19E2 0.34E1 5.6

248 256 0.100E-15 0.615E-14 0.177E-13 0.88E2 0.19E2 4.6

Liberty et al. PNAS � December 18, 2007 � vol. 104 � no. 51 � 20171

A
PP

LI
ED

M
A

TH
EM

A
TI

CS



pj�A� � �A�2/10 [27]

is greater than 1 � 4�n /� j � 1� 100�j. Needless to say, pj(A) �
�A�2 for any positive j. Thus, even for fairly small j (we used j �
6 in this note), pj(A) estimates the value of �A�2 to within a factor
of ten, with very high probability.

This procedure is particularly useful for checking whether an
algorithm (such as that described in Subsection 2.2) has produced
a good approximation to a matrix, especially when we cannot

afford to evaluate all of the entries in the difference between the
matrix being approximated and its approximation. For more
information, the reader is referred to refs. 13 and 14, or section
3.4 of ref. 10.

ACKNOWLEDGMENTS. This work was partially supported by National Science
Foundation Grant 0610097, National Geospatial-Intelligence Agency Grants
HM1582–06-1–2039 and HM1582–06-1–2037, Defense Advanced Research
Projects Agency Grants HR0011-05-1-0002 and FA9550-07-1-0541, Air Force
STTR Grant F49620-03-C-0031, and Air Force Office of Scientific Research
Grants FA9550-06-1-0197, FA9550-06-1-0239, and FA9550-05-C-0064.

1. Golub GH, Van Loan CF (1996) Matrix Computations (Johns Hopkins Univ Press,
Baltimore), 3rd Ed.

2. Sarlós T (2006) in Proceedings FOCS 2006 (IEEE Press, New York), pp 143–152.
3. Martinsson P-G, Rokhlin V, Tygert M (2006) Comm Appl Math Comput Sci 1:133–142.
4. Cheng H, Gimbutas Z, Martinsson P-G, Rokhlin V (2005) SIAM J Sci Comput 26:1389–1404.
5. Gu M, Eisenstat SC (1996) SIAM J Sci Comput 17:848–869.
6. Tyrtyshnikov EE (2000) Computing 64:367–380.
7. Goreinov SA, Tyrtyshnikov EE (2001) in Structured Matrices in Mathematics, Computer

Science, and Engineering I, ed Olshevsky V (AMS, Providence, RI), Vol 280, pp 47–52.
8. Ailon N, Chazelle B (2006) in Proceedings of the Thirty-Eighth Annual ACM

Symposium on the Theory of Computing (ACM Press, New York), pp 557–563.

9. Sorensen HV, Burrus CS (1993) IEEE Trans Signal Process 41:1184–1200.
10. Woolfe F, Liberty E, Rokhlin V, Tygert M (2007) A Fast Randomized Algorithm for

the Approximation of Matrices (Department of Computer Science, Yale University,
New Haven, CT), Technical Report 1386.

11. Martinsson P-G, Rokhlin V, Tygert M (2006) A Randomized Algorithm for the Approx-
imation of Matrices (Department of Computer Science, Yale University, New Haven,
CT), Technical Report 1361.

12. Dahlquist G, Björck Å (1974) Numerical Methods (Dover, Mineola, NY).
13. Dixon JD (1983) SIAM J Numer Anal 20:812–814.
14. Kuczyński J, Woźniakowski H (1992) SIAM J Matrix Anal Appl 13:1094 –

1122.

20172 � www.pnas.org�cgi�doi�10.1073�pnas.0709640104 Liberty et al.


