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Supervised SVMs

Solving fully separable SVMs is a textbook classic.
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Supervised SVMs

The solution w maximizes the margin ((w,x()) + b)y; > 6.

On the Furthest Hyperplane Problem and Maximal Margin Clustering 3/42 Y



Semi-supervised SVMs
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In reality most example labels are not known (that's why we learn).
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Semi-supervised SVMs

One option is to ignore the unlabeled points....
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Semi-supervised SVMs

. and solve the SVM problem on the labeled ones.
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Semi-supervised SVMs

This might lead to suboptimal results.
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Semi-supervised SVMs

Semi-supervised SVMs were shown to be practicaly useful [1][2][3][4].
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Unsupervised SVMs
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How about completely unsupervised SVMs?
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Unsupervised SVMs
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These are always fully separable.
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Unsupervised SVMs
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There are also trivial unbounded solutions.
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Unsupervised SVMs

But there is one separator which maximizes the margin |(w, x()) + b| > 6
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Unsupervised SVMs

Consider the labels obtained by the separator sign({w, x() + b)
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Unsupervised SVMs

They should be correct under the right assumptions.
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Unsupervised SVMs

They should be correct under the right assumptions.
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Furthest hyperplane problem

W.l.o.g., hyperplane passes through origin (b = 0), and ||x;|| < 1.
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Furthest hyperplane problem

Maximize 6
s.t HWH2
V1i<i<n |(w-x)]
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(alternatively)

Minimize ||w||?
V1i<i<n |(w-x)]
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Exact solution

Observation: many separators are “optimal” in a sense.
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Exact solution

Those that generate the correct labeling.
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Exact solution

From the correct labeling it is possible to solve exactly.
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Exact solution

Solution 1: Consider O(n?) linear partitions (Sauer's Lemma + VC dim)
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Exact solution

Solution 2: Consider (1/0)°(¢) separators from and e-net.
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Exact solution

Solution 3: Randomly project to k = O(log(n)/6?) (margin preserved [5]).
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Exact solution

Solution 3: e-net yields (1/6)9(k) = nOog(1/0)/*) candidates.
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Exact solution

Solution 4: Choose n®(/%*) random hyperplanes.
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Hardness of approximation

There is no PTAS for FHP unless P=NP.
MAX-3SAT(13) is hard to approximate [6].
MAX-3SAT(13) reduces to SYM(30) (Symmetric CNF).
SYM(30) reduces of FHP.

It is NP-hard to distinguish whether FHP admits margin \/ig or at most

(1- 5)\% for some constant ¢

The consequence of this is that:

The random hyperplane solution is optimal.
Otherwise 3-SAT is solvable in 2°(")
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FHP approximation algorithm

Input: Set of points xq,...,x, € R?
Output: w € S91
Vie[nn(i)«1,; j+1
while >~7 , 7;(i) > 1/n do
Aj < n x d matrix whose i'th row is /7;(i) - x;
wU) + top right singular vector of Aj
aj(i) + ’<X,', W(J)>‘2 '
Taa(i) < 7(i)e 7
j—Jj+1
end while
w' Z}:lgj -wU) for gi ~ N(0,1)
return: w + w'/||w/||

Theorem
The algorithm returns a hyperplane whose margin is a for at least
n(1 — 3a) of the points (for any a € [0,1]) w.p. at least 1/147.
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FHP approximation algorithm
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Maximize: max|,, j2=1 min;{w, x;)
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FHP approximation algorithm
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T 2
Maximize: max|,, 2=1 Ei{w, x;)
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FHP approximation algorithm
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wy < SVD([x1,...,xp]) yields E;(w,x;)? > 62
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FHP approximation algorithm
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[(wi,x1)?, ... (w1, xn)%] = [1,1,...1,142,,0,0,0,0,...,0,0,0,0]
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FHP approximation algorithm
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We need a set {wy,...,w:} such that V; E; (w;, x;)? € Q(6?)
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FHP approximation algorithm
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n() =1 m(i) = n(i)c )’
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FHP approximation algorithm

wa < SVD([\/72(D)x1, - - ., /T2(n)xa])
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FHP approximation algorithm
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wr < SVD([y/7e(1)x1, ..., \/Te(n)xn])
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FHP approximation algorithm
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The algorithm produce t hyperplanes {ws, ..., w;} (one per itereation).
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FHP approximation algorithm

The algorithm terminates after t iterations
t <2In(n)/ (0?(1 —1/c)) .

When the algorithm terminates, for each i it holds
ijl 012(/) > In(n)/In(c).

Let {wi,...,w;} be the output of the above algorithm then:

Vv E; (wj, x;)? > 62/2.
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FHP approximation algorithm

Let {wa,...,w:} be the output of the above algorithm then:

V,‘ Ej <WJ',X,'>2 > 92/2

Let w' =", gjw; (g ~ N(0,1) independently) and w = w'/||w'|| then:

[{w,x;)| > af

for at lease n(1 — 3«) points with probability at least 1/147 for any
a € [0,1].

this concludes the algorithm description.
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FHP is an important building block (not only in machine learning).
There is an exact poly-time algorithm when the margin is constant.

There is no PTAS in general.

The random hyperplane algorithm is optimal unless 3SAT is solvable
in 2°(7 time.

m There is an efficient approximation algorithm (for most points...)
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Future work and open questions

A connection to the multiplicative updates framework [7] (noticed by
Elad Hazan) is being explored further.

Improve the naive Gaussian combination of wi, ..., w; (unclear if
possible)

It seems that a more careful tweaking of the parameters will yield
slightly better constants.

B More general case, minimizing Hinge loss (in progress with Elad
Hazan and Zohar Karnin).

B Are there more efficient algorithm when the margin is large? (the
random algorithm optimality only holds for small margins...)
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Thanks for listening
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