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ABSTRACT

Most email applications devote a significant part of their real
estate to organization mechanisms such as folders. Yet, we
verified on the Yahoo! Mail service that 70% of email users
have never defined a single folder. This implies that one of
the most well known email features is underexploited. We
propose here to revive the feature by providing a method for
generating a lighter form of folders, or tags, benefiting even
the most passive users. The method automatically asso-
ciates, whenever possible, an appropriate semantic tag with
a given email. This gives rise to an alternate mechanism for
organizing and searching email.

We advocate a novel modeling approach that exploits the
overall population of users, thereby learning from the wisdom-
of-crowds how to categorize messages. Given our massive
user base, it is enough to learn from a minority of the users
who label certain messages in order to label that kind of
messages for the general population. We design a novel cas-
cade classification approach, which copes with the severe
scalability and accuracy constraints we are facing. Signifi-
cant efficiency gains are achieved by working within a low
dimensional latent space, and by using a novel hierarchical
classifier. Precision level is controlled by separating the task
into a two-phase classification process.

We performed an extensive empirical study covering three
different time periods, over 100 million messages, and thou-
sands of candidate tags per message. The results are encour-
aging and compare favorably with alternative approaches.
Our method successfully tags 72% of incoming email traf-
fic. Performance-wise, the computational overhead, even on
surge large traffic, is sufficiently low for our approach to be
applicable in production on any large Web mail service.

1. INTRODUCTION

Mail products and services from the early Lotus Notes and
Thunderbird applications to more recent Web-based email
services such as Hotmail, Yahoo! Mail and Gmail, all offer
organization features such as folders or labels to help users
browse their email. While there has been much heated dis-
cussion on which mechanism is most suitable when organiz-
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ing personal information in general, in the so-called “folders
vs labels war”, two pre-requisites for either mechanism are
that users need to (1) manually define and maintain such
folders or labels and (2) manually move messages into folders
or label these messages as appropriate. It turns out however
that most users do not take the pain to do this. Indeed, we
have verified on the Yahoo! Mail service, one of the top 3
mail services in terms of active number of users, that 70%
of email users have never defined even a single folder. We
can safely assume that other mail clients or services do not
fare better in spite of the prime real estate space folders and
labels use on the mail interface.

We propose here to revive this underexploited feature by
devising a mechanism for automatically associating “tags”
with email messages. Note we are not taking sides in the
folders vs labels debate as each has its pros and cons as
demonstrated by Civan et al in [8]. Instead we focus on a
general mechanism that can be used to support the automa-
tion of either labels or folders assignment. More specifically,
we want to associate with any email message a ranked list
of tags when appropriate. These tags can then be directly
mapped into user-customizable labels or into disjoint fold-
ers (or even a hierarchy of folders if tags are appropriately
clustered).

One unique aspect of our proposed solution is that unlike
previous approaches, we propose to first look “horizontally”
at the overall population of folders’ users, rather than imme-
diately personalizing for each individual user’s inbox. Given
that Yahoo! Mail counts several hundred millions active
users, even only 30% of the population gives a wealth of
data for us to learn from.

In order to check whether such an approach is realistic,
we first needed to verify that folder users expose enough
of a common behavior for us to extrapolate to the rest of
the population. So as a prologue to this work, we exam-
ined the distribution of folder names on a large sample of
Yahoo! Mail users. We observed that many users share the
same “head” folders for similar needs. Figure 1 shows the ex-
istence and frequency of these head folders. These include
expected head folders such as “travel”,“jobs”; “friends”, “fam-
ily”, “bills”, “shopping”, folders exposing new Web habits and
behaviors such as “facebook”, or more surprising ones like
“recipes”. This preliminary study gave us the motivation for
this work, namely as users do seem to have common needs,
we can hope to define a classification model that would gen-

"http:/ /www.cloudave.com/1912/google-gmail-finally-
ends-the-folder-vs-label-war-what-next-find-the-answer-
here/



erate popular tags. This would allow us to automate stage
1 of the email organization (the naming of folders/labels) as
well as the associated stage 2, the actual labeling of any in-
coming message with a popular tag when appropriate. Note
that we do not attempt to support here a full classification
model for rare needs. We could indeed observe that like in
Web search and commerce [12], many folder users expose
“extraordinary” long tail tastes and generated rare if not
unique folders. Yet, we argue that providing even common
tags for “ordinary” needs to this majority of users who never
organize email is already extremely valuable.
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Figure 1: Most popular folders

Devising such an automated tagging system in the con-
text of a real-life huge mail system however poses multiple
challenges:

1. Scalability: As we are dealing with a huge number
of users and even a larger number of incoming mes-
sages. Given today’s latency expectations, is critical
to meet tight performance requirements, and devise
highly scalable techniques, raising questions such as
whether all messages need to be processed? can we af-
ford to parse and utilize each message full-text body?
The resulting system must examine thousands of po-
tential tags for billions of messages per day. Moreover,
this must be performed in the time-critical email de-
livery pipeline.

2. Precision: False classification must be kept to a min-
imum as users are in a passive role where they are pre-
sented tags by default. Users are quick to judge when
dealing with personal content they are extremely fa-
miliar with and will tolerate only minimal irrelevant
results. Techniques need to be devised to control and
tune precision as needed, as we strive to a close to
perfect precision (even at the cost of lowering recall).

Note that there exist multiple additional challenges on the
product side in order to ensure a smooth user experience
and eventual adoption. This requires answering questions
such as: do tags need to be exposed by default and removed
upon demand? can they be renamed? how do they live side
by side with existing folders? etc. We are not addressing
these here and we will keep them for future work. We focus

here on these scalability and precision requirements, and
propose to use a two-phase cascade classification process in
order to address them. For the first phase, we introduce
a novel multi-class classifier, referred to as the tag-vs-tag
classifier, whose role is to pick the most appropriate tags
for each message and return them as a short ranked list.
For the second phase, we use a tag-vs-notag classifier, which
separately verifies for each of the candidate tags whether it
should or should not be presented.

Using this two-phase-process allows our system to per-
form well on both scalability and precision requirements. In
terms of scalability, the novel design of the presented tag-
vs-tag classifier outputs O(1) top tags for a message in time
that scales logarithmically with the overall number of tags.
For a typical message in our implementation, this requires
less than 2 microseconds. This process is described in Sec. 4.
In terms of precision, correct thresholds for the tag-vs-notag
classifiers (Sec. 5) filter out tags that do not meet the pre-
scribed precision requirements. Since this phase only exam-
ines O(1) candidate tags, it cannot hurt our overall perfor-
mance guarantee. Setting these thresholds is made signif-
icantly harder due to the fact that a single message might
receive multiple valid labels. For example, “bills”, “shopping”
and “amazon” (tags that are derived from the popular fold-
ers shown in Figure 1) might all correctly describe different
aspects of a single message. Overcoming these difficulties is
explained in Sec. 5.

The key contributions of this paper are the following:

e A new “horizontal” view of the email classification chal-
lenge that allows to leverage the wisdom of crowds for
tagging messages.

e A novel cascade classification model specifically de-
signed for performance and scalability. This model
selects the appropriate tag out thousands of options
under harsh performance requirements.

e A new estimator for the presence of each tag within
the (unlabeled) Inbox. This facilitates quality control
via the automatic setting of precision cutoffs per tag.

e An optional “vertical” personalization to allow reduc-
ing the number of suggested tags while maintaining
diversity for a better user experience.

e An analysis of email corpus much larger than previ-
ously reported.

2. RELATED WORK

The task of automatically assigning email messages into
folders, commonly referred to as “foldering”, is usually con-
sidered a special case of text categorization. Since we can-
not hope to survey the entire field of text categorization
we focus here only on those efforts aimed directly at email
foldering. As in most domains, application of standard text
based methods require special accommodations; please see,
e.g., [4, 9] for good comparative studies.

All reported works classify messages of a single user (or
mail-list [2]). The approaches include rule-based systems
(e.g., [9, 18]), IR methods: k-NN [6] and tf-idf, and machine
learning methods: naive Bayes (NB), decision trees, sup-
port vector machines(SVM), maximum entropy (MaxEnt)
and neural networks (NN) [1, 4, 10, 14]. Another common
approach is to consider additional properties of email mes-
sages and utilize structural features, e.g., [2, 15]. Results for



these methods are commonly given for the Enron and SRI
datasets [4, 6, 7, 15].

A significant aspect differentiating our work is consider-
ing many users simultaneously. In previous works, each
user’s emails and foldering habits were learned separately.
In this work we share information between users and learn
the foldering habits of the entire population. This is crucial
for being able to service passive (non-foldering) users, which
are the majority of the population. This global approach,
however, significantly raises the computational challenges.
Instead of the few tags used by a single user, here we must
consider for each message thousands of possible tags used
by the entire population. Moreover, it is quite likely that
multiple different tags are appropriate for a single message.

In addition, our performance requirements are much tighter,

as we need to scale to a large production email system.
Hence, we must resort to fastest methods, while many of the
previously reported approaches would not be practical. This
includes severe limitations on the message features available
to us at delivery time. As a side note, the largest publicly
available dataset (Enron), contains 500 times fewer messages
than the corpora we employ here,

3. BASIC NOTIONS AND CONVENTIONS

This work deals with email messages (or simply, mes-
sages). Each message is viewed as a set of features. The
used message features are unigrams and bigrams from the
subject line and sender details. The features are binary (ei-
ther exist or not, with no associated count or weight). Some
messages are labeled with tags. In practice, the tags are the
folder names to which users assign their messages. Hence,
in our training data at most one tag is associated with any
message. Typically, we deal with a few thousand different
tags, assigned to many millions of messages.

We index individual tags by « and y and their number
by n. Messages are indexed by i and j. The set of features
associated with message ¢ is denoted by F;. We work with
four message sets: a set of labeled training messages T,
labeled test messages 7, unlabeled training messages Z and
unlabeled test messages Z. Unlabeled messages are sampled
from non-foldered inbox messages.

4. PHASE 1: PICK ATAG

As explained in the introduction, our process begins with
efficiently searching for the most appropriate tags for each
message. In this section we describe three classifiers that
are built to scale to a large number of tags and messages.
While the first two models are adequately fast to train of-
fline, their online prediction performance is still too slow to
be practical. The third exhibits also efficient online predic-
tion. Common to all these methods is the need for a low
dimensional representation of messages and tags.

4.1 Latent factor representation

A key component underlying our models is a mapping of
both messages and tags into a joint low dimensional space
of dimension ¢, to which we refer as the latent factor repre-
sentation, as follows:

e Bach tag « is mapped into a vector p, € R
e Bach feature f is mapped into a vector vy € R’

e Each message i is mapped to a vector ¢; € R, defined
by the message features to be: ¢, = u{” ZfeFi vy

In addition, we introduce biases for tags, such that the
bias of tag x is denoted by b,. The latent space represen-
tation strives to capture the semantics of the tags and mes-
sages, such that affinities in the latent space reflect seman-
tic relations. Working in low-dimensional space is extremely
beneficial. It allows us to design efficient multiclass classi-
fiers, with low dimensional dense representation leading to
memory locality and a small number of used parameters. In
our setting, we use a latent space dimensionality of £ = 50,
which gives a good tradeoff between time and accuracy.

Given such a latent space representation and a message 1,
tags are ranked by their affinity to the message defined for
each tag x as

Tiz d:ef bz + qup:v =

|Fz| Z 'Ufp:c (1)

feF;

Thus, the learning task is learning the latent factor repre-
sentation. We will offer two alternative ways to learn such
a mapping. As explained earlier, the major challenge would
be making such a process computationally efficient.

4.2 A max-likelihood approach

Given a message i, the tags are assumed to follow the
multinomial distribution

exp(Tiz)
EP Y ©)
>y, exp(riy)
where © denotes set of model parameters.

We seek to assign tags to all messages in a way that max-
imizes the log likelihood of the training data

L(T;0) = > logp(ali; ©). (3)

(i,z)ET

p(z]i; ©) =

Note that this model is a latent space analogous to multi-
nomial logistic regression [13] and to MaxEnt [4].

Learning proceeds by stochastic gradient ascent. Given a
training example (i, ) we update each parameter 6 by

Jlogp(x|i; © Oriz 87"2
At‘):n% < Zp yl) y) (4)

where 7 is the learning rate.

However, such a training scheme is too slow to be practi-
cal, as each of its update rules requires summing over the n
tags. Thus, we resort to a sampling approach of the weighted
sum in (4). We adopt the importance sampling trick by Ben-
gio and Senécal [5].

Let p(z|T) denote the empirical probability of tag = in
the labeled training set 7. This is the distribution from
which we sample tags into a set J. Thus, the expensive-to-
compute p(yli) probabilities appearing in (4) are replaced
with the weighting scheme

wali) — SR /p(a]T)
5= e exb(ran) [p(TT)

Accordingly, the approximated gradient ascent step given
training example (i, x) is

_ 87’7;1 . 87”7;y
AG =1 < 50~ 2 w7, ) (6)
yeTJ

The set J is sampled with replacement based on p(z|7). To
do so, we randomly sample a (i, ) pair from the training set,

(®)




and add the tag x to J. As mentioned in [5], the size of set
J should grow as the training process proceeds, because at
later training phases more delicate parameter adjustments
need to be made. We devise a simple rule for controlling
the sample size based on the fitness of the current estimate.
Given a training example (i, z), we first sample a fixed frac-
tion of the tags population (in our implementation, n/32
tags). Then, we keep sampling tags into J till satisfying:

> pyli) > c-plali) & Y exp(riy) > c-exp(ric)  (7)
yed yeJ
We use ¢ = 2 and a maximal sample size of n. This adap-
tive sampling automatically increases the sample size as pa-
rameters converge to their final values and the correct tags

receive relatively high probability. We refer to this method
as FlatLikelihood.

4.3 A normalized hinge loss approach

Here we adapt a learning to rank approach, originated by
Weston et al. [19]. We try to minimize the number of mis-
classified messages by noticing that message i is misclassified
if it is tagged = and for some other tag y we have 7, < 7r4y.
Our error function is therefore defined by

S I@y: rie <riy). (8)

(i,z)eT
Let us denote the number of tags violating example (z,%) by
Hylriz < riy}l- 9)

Using this notation, we rewrite (8) in an equivalent form

#uviolations(x,1) =

3, 1 < 12y)
=2

#uviolations(x, 1) (10)

(i,x)ET
where 0/0 is taken as 0 [19]. Replacing the indicator function

with a continuous hinge loss with a margin, to get the loss
function

-y sy
Glr violations' (x4
where |z|y = =z if © > 0 or zero otherwise. In addition

the margin-aware #violations®(x,1) is defined as |{y|ri, <
Tiy + 1}|

Minimizing (11) is costly due to the requirement to sum
over all potential tags. Hence, much like in the max-likelihood
case, a sampling approach is used. To make things easier,
now the sum is not weighted by an expensive-to-compute
probability, so we can get its unbiased estimate by uniformly
drawing tags with replacement into a set [J. This way, an
unbiased estimator of E*(7) would be

— Tiz + Tiy|+

-y e
#uviolations* (T, x,1)

(i,z)ET

(12)

where #uviolations' (T, x z) |{y € J|riz < riy + 1}].
Learning is done by a stochastic gradient descent on E'.
Given a training example (i, z), we sample into J n/32 tags,
and keep on sampling till #violations (J,x,i) > 1 or till
hitting n samples. We refer to this method as FlatNormal-

izedHinge.
In our experimental study, both FlatLikelihood and Flat-
NormalizedHinge produce better results than several known

baselines. However, they still suffer from poor online com-
putational efficiency. Indeed, for each new message, we must
evaluate all possible tags. Thus, the main use of these two
models is in constructing a tree hierarchy of the tags, as
described in the next section.

4.4 Hierarchical classifier

We stick to the principles of the latent factor models devel-
oped in the previous section. However, in order to let their
prediction performance scale to a large number of tags and
messages, we draw inspiration from works on language mod-
eling, where words are modeled within a hierarchy, thereby
enabling prediction of the next word out of a large vocabu-
lary [16, 17].

The first step is embedding all tags as leaves of a binary
hierarchical structure by recursively partitioning the tags
into balanced groups. To this end, we represent each tag
x by its latent space mapping pz, as computed by either
FlatLikelihood or FlatNormalizedHinge. Then we apply a
k-means clustering (the variant by [3]) with k& = 2 to the
tags’ representations. We create two equally sized clusters
by sorting the tags according to their distance from the two
means, and splitting at the middle point. Then, we continue
recursively until reaching singletons. Hence, the n tags are
identified with leafs of a binary tree (hierarchy) of depth
O(logn).?

Each internal tree node a is associated with a hyperplane
ba + 27pa = 0 for pa,z € R’. For a given message 7, along
with its latent factor representation ¢;, we traverse the tree
according to half spaces ¢; is in (with respect to the internal
nodes’ hyperplanes). More precisely, we employ the follow-
ing traversal rule: at internal node a, proceed to the left
child if by 4+ ¢F pa > 0, otherwise proceed to the right child.
Hence, given a message and a trained tree, one can traverse
the root-to-leaf path in O(logn) steps.

We still need to devise ways for learning the parameters
of the model, i.e., the internal nodes’ hyperplanes and the
messages’ representation. Intuitively, a classifier trained on
the formed hierarchy should encourage training examples to
follow the paths leading to their true tags. More precisely,
define dq, = 1 if the leaf corresponding to z is a left offspring
of a and da. = —1 if z is a right offspring of a.® If message
i is tagged by = we strive to have sign(be + ¢f pa) = das-
If this is true for all internal nodes leading from the root
to x, then message i will be correctly classified. Learning
the parameters (b, pa, i) can be based on either the max
likelihood principle or on the normalized hinge loss. We first
show the derivation for the normalized hinge loss.

Given a hierarchy T, and a training example (i,x), we
define the set of violating nodes as

#violations' (T, x,i) = |{a € path,|(ba + ¢; pa)dax < 1}
Here path, stands for the set of internal nodes on the path
from the root of the tree to x. Then, the normalized hinge
loss associated with the training set, given hierarchy T is

?We have tried several other clustering methods. Our ex-
periments showed that performing k-means clustering on
normalized vectors (whereas tag x is mapped to pa/||pz||)
slightly improves subsequent classifier performance.

3A leaf z is a left(right) offspring of a if the left(right) child
of a is on the path from the root node to x.



defined as

ENT:T)= ).

(i,x)ET

Zaepathx |1 - (ba + qZ'Tpa)daz|+
#Huviolations! (T, x,1)

(13)

Optimizing is done by stochastic gradient descent. Each
training example requires traversing only a O(logn)-long
path, which compares favorably with the O(n) tag com-
parisons required by the FlatNormalizedHinge (even after
sampling). The impact of this structure for online predic-
tion is even more significant at stated above. Henceforth,
we dub this method as HierNormalizedHinge.

The derivation for maximizing the log likelihood is analo-
gous. For a message i, at a tree node a we define the proba-
bility to proceed to the left child using the logistic function
as o(a,i) = (1 + exp(—ba — ¢ pa))”". Learning is done by
stochastic gradient ascent on the training set log likelihood

L(T;T) = Z Z %(1+dw)loga(a7i)

(i,z)€T aEpath,
1
+5 (1 = dao) log(1 = a(a, i) (14)

Henceforth, this method is referred to as HierLikelihood.

Hierarchical classifiers are natural for suggesting a single
tag per message. In case more than one tag suggestion is
required, we use an empirical confusion matrix. For each
tag we record the tags it most commonly confused with.
This way a single leaf outputs a list of multiple ranked tag
suggestions. We elaborate more on this, and on performance
evaluation in the empirical study (Sec. 6).

5. PHASE 2: TO TAG OR NOT TO TAG?

In the second phase we get a message together with a short
list of suggested tags produced by the first phase. For each
of the suggested tags, we decide whether we should keep it or
filter it out. This is achieved by applying a binary classifier
to each message and suggested tag independently.

For each tag we train a binary classifier by comparing
messages labeled by the tag to unlabeled messages. Un-
like in the first phase, the measure of success here is hard
to evaluate. This is because each tag has a different pres-
ence within the set of unlabeled messages. For example,
the tag “generic stuff” is rarely used (thus being associated
with only a few labeled messages), and still a relatively large
number of unlabeled messages could justifiably receive this
tag. Moreover, different kinds of messages have different
probabilities of being labelled. This makes the distribution
of labeled messages different than the distribution of unla-
beled one, e.g., travel related messages are much more likely
to be tagged than promotions. Addressing this issue is the
main challenge faced by the second phase. We first address
the general problem and then discuss it for our case.

From this point on we view this problem as a one-tag-
problem: either tag or not tag. We are required to construct
a high precision classifier f for tag x. We make the crucial
assumption that each message which justifies tag z is actu-
ally labeled x with probability prob, independently of the
message content. In other words, the probability of a mes-
sage being labeled x is independent of its content conditioned
on z justifying tag . .

We denote by 7, the set of messages labeled by x in T
and by Z, the set of unlabeled messages in Z which justify
tag x. In order to argue against the precision of f we must
estimate the size of Z,. This can be performed with the

help of a picky-classifier g whose precision is (almost) per-
fect but whose recall might be very low. We assume such
g exists. Let ¢g(7:) denote the set of messages ¢ identifies
as labeled by z in Ta. From our assumption, the content
distribution in 7, and Z, is identical. This means that
g should exhibit the same recall on both sets which gives
|9(Zo)|/1Z2| = |g(T2)|/|Tz|. Moreover, since g’s precision is
almost perfect we have that |g(Z,)| ~ |g(Z)|. We therefore
get that

\Ze| % 1g(@D)| - 1T21/19(Ta)- (15)

Having approximated the size of 7. we return to esti-
mating the precision of our classifier f. Again by our in-
dependent tagging probability assumption, we have that
the recall of f on 7, approximates its recall on Z,, i..,
[ F(Z)|/|Zz| = |f(T2)|/|T=|. Moreover, f(Z) is exactly the
set of unlabeled messages which are correctly classified by
/. Dividing this by the overall number of labeled messages

f(Z) we get the precision of f.
f(T2)| 19D

S S R TR
@ Tl 1)

We now discuss our specific choices of classifiers. For g we
use a Naive Bayes classifier [13] trained to separate messages
tagged x in T from all messages of Z. The reason for using
the Naive Bayes classifier here is a relative comfort in setting
a uniformly sufficiently high cutoff value for achieving our
close-to-perfect precision demands. Consequently, we set the
cutoff to exp(10). It is worth noting that the choice of the
Naive Bayes classifier is somewhat arbitrary. Many other
binary classifiers could be used with appropriate thresholds
to the same effect.

For f, several binary classifiers were tried, including Naive-
Bayes, hinge loss-based, and logistic regression-based. The
best empirical results were achieved with the method de-
scribed in the following. We keep using the mapping of
messages and tags into a low dimensional space as described
in Sec. 4.1. The mapping here is not identical to the ones
computed in Sec. 4.1 but, for the sake of clarity, we keep us-
ing the same symbols. Moreover, for computational reasons
the mapping of messages to the latent space, g;, is shared
between all tags. An individual tag classification is carried
out by thresholding on 7z = bs + ¢ pe.

We follow a logistic-regression strategy, implemented in
the low dimensional latent space. For a message i, we define
its probability of it being labeled = as:

plali) = (1 +exp(—riz)) (17)

Hence, 1 — p(z]i) is the probability that message 4 is not la-
beled by z. We maximize the log-likelihood of the combined
training set

> logp(xli)+> > log(l—p(ali))  (18)

(i,2)eT i€l =

~

precision(f)

Learning is done by stochastic gradient ascent. Training
time is potentially long due to the second summation which
runs over all unclassified messages and tags. This can be
controlled by limiting the relative size of |Z| to be compara-
ble to the number of messages belonging to a single tag. In
terms of classifier accuracy such a limitation is reasonable.

We set each classifier f, such that f;(7) returns true if
Tiz > Yz. The thresholds v, are chosen such that the pre-



cision of f, is high enough according to Equation 16. More
details are given in the empirical study (Sec. 6).

6. EMPIRICAL STUDY
6.1 Dataset description

We experimented with email data gathered from anonymized

Yahoo! Mail users. Performance and privacy requirements
limited us to analyzing only the subject and sender fields
of each message. Overall we collected close to 200 million
foldered messages. The messages were partitioned into three
different datasets by arrival month that we refer to as T1,
T2, and T3. Within each dataset, we split the messages into
train and test sets by arrival time.

We limited ourselves to popular user-defined folders de-
fined by a large enough number of users and directly mapped
them into a raw list of 6,000 tags. We then ran the Flat-
Likelihood model of Sec. 4.2 on the T1 corpus. The re-
sulting embedding of the tags within the low dimensional
space allowed us to identify synonymous tags, by clustering
tags by their low dimensional embeddings’ cosine similarity.
For each of the 819 non-singleton clusters a representative
tag was selected. Namely, the one most frequently used.
For example, for the cluster {facebook, fb, facebook stuff,
face book,. ..} the tag facebook was retained and all other
tags/folders merged. Similarly fun was retained for {fun,
jokes, humor, keepers, fun stuff, funny, funnies, jokes etc,
funny stuff, funnys, joke,. ..}, and recipes for {recipes, recip-
ies, food, receipes, cooking, food recipes, recopies, allrecipes,
all recipes,. . . }. In addition, some tags were removed, based
on signals indicating they were hard to classify. They typ-
ically were of three types: (1) Ambiguous tags such as {a,
b, ¢, d, anything, stuff, just stuff, emails, everything, every-
thing else, misc,. ..}, which in any case would not bring any
value to users; (2) Personal names, which mean something
else to each user, do not fit our global learning task and most
of all would endanger privacy; (3) Offensive or inappropriate
tags. Note also that we focused on a single language for con-
sistency purposes so all non-English tags were removed as
well. The cleaning and relabeling process reduced the num-
ber of tags from 6,000 to 2,000, and eliminated about 50% of
the messages. Note that in a deployed product, in addition
to the automated process, which is key to regular updates
and applicability to other geos, we believe that quality con-
trol should also be conducted by a human editor in order
to formally approve the final list of tags before exposing to
users. We do not expect this process to be too tedious given
the relatively short size and generality of the final list. It
would also clearly respect the terms and conditions of most
mail services as it would only be applied in the final stage
on massively aggregated and thus anonymized data.

The description of the datasets is given in Table 1. A
histogram of the number of messages in each folder for the
T3 Train dataset is given in Fig. 2. In addition, the left
column in Table 4 lists the most populated folders in the
dataset by messages (as opposed to by users as depicted in
Fig. 1).

In order to enable the second phase of the our method,
we sampled two datasets of non-foldered messages. Each
dataset was split into train and test sets. These datasets
are described in Table 2.

Fach message is represented as a set of 70 features at most,
with an average of 15. A feature can be a unigram (single
word) or a bigram (adjacent words) extracted after tokeniz-

Corpus title | size before cleaning | size after cleaning

T1 Train 64,944,551 35,682,312
T1 Test 6,870,011 3,975,829
T2 Train 26,699,484 7,374,012
T2 Test 3,444,248 1,779,385
T3 Train 71,237,679 37,783,613
T3 Test 26,609,484 14,300,864
Total [ 199,895,457 [ 100,896,015

Table 1: Three foldered messages datasets, gathered
over 3 different periods, each split into train- and

test-set
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Figure 2: Histograms of number of messages per
folder in the T3 train set (mode: 1,167, median:
2,438, mean: 20,773)

ing the subject and sender fields, or a full sender domain.
Thus, for a message from ancestry.com (a genealogy service),
the full domain feature is ancestry.com, a sender feature is
ancestry, and subject features include {family, family tree,
your family}.

Feature selection was performed as follows. We computed
the information gain of each feature with respect to each
folder (a standard procedure in text feature selection, see
e.g., [11]). Information gain tends to grow with folder size
and accordingly would favor larger folders. Hence, to en-
sure a minimal representation for each folder, we retained
the 20 features with the highest information gain per folder.
Beyond this, we ranked all features by their maximal infor-
mation gain value, and kept the top features. The process
reduced the number of features to 2'%, which allowed us to
represent each feature using a short integer.

6.2 Evaluating Phase 1 “tag-vs-tag” classifica-
tion
Accuracy comparison: The tag-vs-tag classifier used in
the first phase of our approach was evaluated on the three
datasets of foldered messages. For each message, all 2000

Corpus title | size

T4 Untagged Train | 8,330,355
T4 Untagged Test | 8,329,492
T5 Untagged Train | 20,134,623
T5 Untagged Test | 20,139,110

Total | 56,933,580

Table 2: Two non-foldered message datasets, gath-
ered at different periods, each split into train- and
test-set



tags were considered. We computed the accuracy rate as
the fraction of messages for which we suggested the tag that
was originally assigned by the user. Note that such an ac-
curacy metric underestimates the true performance of the
method. This is because a suggested tag which is different
from the one the user chose might also fit the message. We
compared our methods to several baseline models, which we
now describe.

First, we used a nearest-neighbors approach, whose vari-
ants were used in the past for foldering messages. We view
each folder as a long document containing all its messages.
A standard vector space (aka tf-idf) representation is used
for the resulting document corpus and for each test message.
Then, we assign each message to the folder most similar to
it based on cosine similarity. Results of such an approach
significantly lagged behind the rest. For the T3 test set it
could correctly assign 32.70% of messages into their given
tags. The main issue with this naive Information Retrieval
approach is that it fails to distinguish well populated folders
from scarcer ones. Hence a quick fix would be to augment
each cosine value with the popularity of the tag, that is, the
number of messages belonging the respective folder. Our
experiments showed best results when multiplying the co-
sine with the square root of tag popularity. Consequently,
accuracy on the T3 data grew to 51.07%.

Next we applied a Naive Bayes classifier (NB) [13], which
typically performs decently in text classification and was
previously used for email classification. In order for NB to
produce suitable results, one needs to smooth both feature
counts and folder sizes. That is, in order to estimate the
probability of observing feature f at tag (or, folder) z, we
count: (1) ny — the number of messages belonging to folder
z; (2) ng,p — the number of messages with feature f at folder
z. Then we define a smoothed conditional probability

Na,f + K1

p(flz) = ————

The feature count smoother, k1, is standard with NB, and
we set its value to 1. Of a much greater importance was
the folder count smoother, k2, which penalizes small fold-
ers. We set its value to 10*. The rest of NB derivation
follows as usual. The fitness of tag = for message i is taken
to be p(z)[[;cp, p(flz). The NB classifier could classify
55.47% of T3 messages into their given tags, which is an
improvement over the nearest neighbors classifier.

Next we report on the accuracy of the FlatLikelihood clas-
sifier described in Sec. 4.2. Note that this classifier can be
viewed as a scalable version of Logistic Regression (or the
equivalent MaxEnt), allowing it to deal with thousands of
labels through a latent space mapping and importance sam-
pling. FlatLikelihood could classify 57.68% of T3 test mes-
sages to their exact given tags, exceeding the accuracy of
NB.

HierLikelihood, the hierarchical version of FlatLikelihood,
surprised us by meaningfully exceeding the accuracy of Flat-
Likelihood, thereby yielding a 61.58% accuracy rate. This
shows that constraining the classifier to a strict hierarchi-
cal tag structure, did not harm but rather improved per-
formance. The same phenomenon was observed on the T1
and T2 datasets. We speculate that the rigid hierarchical
structure could serve as regularizer contributing to the gen-
eralization power of the classifier.

Finally, let us mention the normalized hinge classifiers,
which yield best accuracy in our tests. The flat version

(19)

(FlatNormalizedHinge) achieved an accuracy rate of 62.78%,
whereas the much faster hierarchical version (HierNormal-
izedHinge) got a slightly lower accuracy of 62.38%. Since
these margin-based classifiers share resemblance with SVM,
their superior results bode well with the findings by Bekker-
man et al. [4], which stated that the SVM classifier produces
best results in a related email classification task.

The results we have described for T3 follow the same trend
also on the T1 and T2 test sets. Full results are described
in Fig. 3.
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Figure 3: Accuracy of different tag-vs-tag classifiers

These classifiers can output more than a single label. Hence,
we let FlatLikelihood and FlatNormalizedHinge list for each
message the top-K tags of highest scores. Following the
same procedure with the hierarchical classifiers would badly
affect their computational speed advantage. Hence, as pre-
viously explained, we employed an approximated approach
for the hierarchical classifiers. We stored for each tree leaf
an ordered list of the folders most frequently leading to the
leaf, and returned the top-K head elements of that list. Ac-
cordingly, recall-at-K results are depicted in Fig. 4. The
approximated approach makes the hierarchical methods lag
behind the flat ones as K grows. Still, for all the four meth-
ods recall@10 already exceeds 80%.
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Figure 4: Recall-at-K for different tag-vs-tag classi-
fiers on T3



method prediction records/sec hours/
Run times: We trained the classifiers with stochastic time GigaRecord

gradient descent (or ascent), while looping over the dataset tEidf cosine 3920 sec 5116.35 54.20
with a decaying learning rate. When visiting the /-th exam- tf-idf cosine*sqrt(pop) 4642 sec 4320.57 64.29
ple the decayed learning rate was set to 10° /(5-10° +1). Regu- Naive Bayes 3885 sec 5162.44 53.81
larization (weight decay) was found counter-productive and FlatLikelihood 1961 sec 10227.47 27.16
hence is not employed. Training stops after visiting 22% ex- FlatNormalizedHinge 1968 sec 10191.10 27.26
amples, a point where observed accuracy of the process con- HierLikelihood 35 sec 573030.8 0.48

verges for all tried methods. We report times measured on HierNormalizedHinge 35 sec 573030.8 0.48

a HP DL160 G6, 2xXeon X5650 2.67GHz system (with sin-

gle threaded processes). Training times differ dramatically
between the hierarchical and the flat classifiers, as depicted
in Fig. 5. The fastest one, HierNormalizedHinge, takes 1017
seconds to complete training. HierLikelihood closely follows

Table 3: Prediction running times of the various
classifers on the total 20,056,078 test messages (the
three test sets combined). We also report the
throughput of each method in records/sec, and the

with a run time of 3440 seconds. The flat classifiers took
much longer to complete: 30,679 seconds for FlatNormal-

time (in hours) to process 10° records.

Most used Most Inbox coverage Most suggested

facebook 13.89%
groups 9.22%
friends and family 4.55%  promotions 20.96%

facebook 17.67%
groups 13.38%
stores 5.19%

advertisement 32.19%

izedHinge and 41,126 seconds for FlatLikelihood.
facebook 26.22%

10°

—4— FlatNormalizedHinge ebay and paypal 4.30% stores 15.94% friends and family 3.19%

-m- FI_atLikeIihOQd ) .2 jobs 3.55% groups 15.16% jobs 1.59%
H!erN_ormallzedHlnge orders 3.40% videos 13.84% advertisement 1.17%

A HierLikelyhood travel 1.96% spam 12.16% work 1.17%

adult 11.62%
attachments 10.87%
movies 9.60%
shopping 8.19%
stories 7.54%
newsletters 7.38%

pictures 1.95%
recipes 1.89%
bills 1.87%
fun 1.71%
school 1.61%
finance 1.37%

tagged 1.14%

videos 1.00%

travel 0.86%

spiritual 0.78%

ebay and paypal 0.76%
health and fitness 0.59%

run time (sec.)

1 . . . . . . . . .
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Figure 5: Training times of the tag-vs-tag classifiers

Much more important than the offline train time are the
online prediction times. We measure the cumulative time
required to predict the 20,056,078 records within the three
test sets. Results are shown in Table 3. Here the train-
free NB and the nearest neighbors classifiers, were proved
to be slowest, taking 54 hours to label 1 billion messages.
Assisted with their memory-local low-dimensional represen-
tation, FlatLikelihood and FlatNormalizedHinge could ac-
complish the same task in half the time — 27 hours, which
is still way too slow for our system requirements. Note that
while the FlatLikelihood and FlatNormalizedHinge differ in
training, at test time they use the same linear function and
hence take the same computation time. Finally, as expected,
the hierarchical classifiers are significantly faster, requiring
less than half an hour to label 1 billion messages. In other
words, HierNormalizedHinge and HierLikelihood took less
than 2 microseconds to label a message, satisfying our per-
formance requirements. As a conclusion, HierNormalized-
Hinge clearly proves as our chosen method for Phase 1.

6.3 Evaluating Phase 2 “tag-vs-notag” classi-

fication

The tag-vs-notag classifier was applied to the results screened

by the first phase HierNormalizedHinge. The first task at
this stage consisted in evaluating the fraction of inbox mes-
sages that can be labeled with each of the tags. We followed
the estimation process described in Sec. 5. The 20 most
covering tags are described in the second column of Table 4.

amazon 1.23% work 7.34% shopping 0.55%
news 1.09% sales 6.90% news 0.55%
shopping 1.07% clothes 6.60% newsletters 0.54%
work 1.01% friends and family 5.93%  yahoo 0.51%

stores 0.84%
health and fitness 0.82%
tagged 0.81%

array 5.33%
entertainment 5.13%
business 5.08%

orders 0.49%

amazon 0.46%

friendster 0.47%

Table 4: List of 20-top tags in terms of: (a) number
of messages inserted by user population to the cor-
responding folders; (b) number of messages passing
the tag’s classifier (here shown percentages exceed
100%, as a single message can agree with multiple
tags); (c) number of messages our method assigned
the tag.

Note the striking difference between the tags actually em-
ployed by users (first column of the table) and the tags fit-
ting most messages (second column of the table), which we
find quite illuminating. For example, a tag like “advertise-
ment” was found to be related to over 32% of (non-spam)
inbox messages. Not surprisingly, such a tag was nowhere
to be found among the top tags actually used by users. This
in short tells the difference between the objectives of two
phases of the system. The first phase attempts at suggest-
ing the tags that actual users are expected to pick, and in
case of multiple appropriate tags it will follow the wisdom
of crowds. Hence, it will prioritize tags in a way resembling
the first column in the table. On the other hand, the sec-
ond phase evaluates the fit between each tag and a message,
thereby favoring some rather generic tags such as those at
the top of the second column of the table.

In order to assess the quality of the tag-vs-notag classifier,
we computed its precision-recall curve on the T5 Untagged
test set. Such a curve is necessarily approximate, where we
employ the methods described in Sec. 5 for estimating pre-
cision and recall. In addition, since the second phase consid-
ers a separate classifier per tag, we averaged results over all
tags. The results are depicted in Fig. 6. We decided to set
the classifiers’ thresholds in order to achieve an estimated



100% precision level for each of the tags. At this level, the
expected average recall would be 75.5%.

50 60 70 80 90 100
precison
Figure 6: Precision recall curve averaged over tag-
vs-notag classifiers. Since we are interested in high
precision, we zoom-in on the higher precision half of
the curve.

An ultimate test of our system consists of evaluating cov-
erage as the fraction of total Inbox messages it can tag, or,
the fraction of messages “surviving” the two-phase screening.
When the first phase generates only the single top tag for
each message, the second phase retains 67.74% of the sug-
gested tags, leaving 67.74% of the inbox messages tagged.
This fraction slowly improves when we allow the first phase
suggest more tags. For example, when the first phase sug-
gests 10 (20) tags per message, 71.26% (72.61%) of the In-
box get eventually tagged. These numbers indicate that our
tagging system would be not only discoverable but clearly
visible to most users. The rightmost column of Table 4 lists
the tags most often suggested by the whole process on the
T5 Untagged test set.

In spite of the fact that during the first phase multiple tags
can be suggested, we found out that most of those besides
the first one are rejected by the second phase. For example,
when the first phase suggests 10 tags per message, then at
the 71.26% of messages actually keeping at least one tag,
an average of just 2.22 tags per message survive. Similarly,
when the first phase is allowed to suggest 20 tags, then an
average of 2.54 tags survive for messages actually keeping at
least one tag. We view this positively, as we would not want
a single message carry too many tags.

7. PERSONALIZED TAGGING

Our models, as described so far, aim at global modeling.
Hence, a message is tagged regardless of the receiving user.
However, at certain cases one would like to employ a more
personalized tagger. For example, suggested tags can change
based on localities or user demographics. In addition, we
may want to promote tags already used by the user (e.g.,
pre-existing folders). This requires modifications to the first
phase of the model. The fact that the classifiers are based
on a low dimensional mapping of the messages allows their
straightforward enhancement to cope with personalized tag-
ging.

Recall that in all classifiers a message is represented as a
vector ¢;. We augment this vector with a user dependent
vector z,. That is, when message ¢ is received by user wu, its
personalized representation would be ¢; + 2.

One way to define z,, which we have not implemented yet,
is as follows. Let us assume that user attributes are Boolean,
given by the set A(u). With such Boolean attributes, one
can describe gender, age group, locality, identity of existing
folders, etc. We associate a distinct factor vector y, € R*
with each attribute, in order to describe a user through the

set of attributes associated with her: z, = ZGGA(U) Ya. The
Yo vectors are learned during the training process in ex-
actly the same manner the message (or feature) vectors are
learned. We plan to try this approach in the near future,
subject to data availability.

A simpler idea, which we indeed tried, is to define z, in
terms of already learned parameters. A user is represented
through the set of messages she received. Let us denote
the set of messages received by user u by M(u). Then the
message vector ¢; is replaced by

¢ = (a+pMw|™ D a|/A+p)  (20)
JEM(u)

This way, all user messages are getting shrunk towards
each other, by an extent controlled by the constant p, effec-
tively reducing their variance. To motivate this shrinkage
consider that many coexisting messages might be closely re-
lated to several tags. We strive for a consistent labeling of
such similar messages. For example, it may be undesirable
to assign many messages with the “stores” tag, and many
other messages at the same inbox with the closely related
“shopping” tag. Shrinking all messages towards each other
will effectively make all decisions inter-dependent.

In order to experiment with this approach, we worked with
all users receiving at least 25 messages in the T5H Untagged
test set. Then, for each user we run the first phase with
different values of p, followed by the usual run of the second
phase. Results for different numbers of phase 1 suggestions
are summarized in the table below.

p 1 - suggestion 10 suggestions 20 suggestions

0 67.74%; 9.95
0.5 66.98%:; 9.38
1 61.83%; 7.16 68.16%:; 8.80 71.11%; 9.57
2 53.51%; 3.80 63.43%:; 6.04 68.00%; 7.13

71.26%; 11.20
71.03%; 10.68

72.61%; 11.64
72.83%; 11.23

Each entry in the table describes the fraction of inbox mes-
sages that we could tag, followed by the average number of
distinct tags for a single user. We can see that when allow-
ing phase 1 to output 20 suggestions by a non-personalized
method (p = 0), 72.61% of messages get tagged yielding
11.64 different tags in an average user inbox. By increas-
ing p to 2, the number of tagged messages modestly drops
to 68%. At the same time the number of distinct different
tags a single user receives drops to 7.13. When system de-
signers want to limit a potential overwhelming complexity of
too many co-existing tags, such a tradeoff will be desirable
— significantly reducing the number of tags at the price of
tagging slightly fewer messages.

8. CONCLUSIONS

We have described here a system for labeling email mes-
sages at a very large scale. The system is based on leveraging
the folders of relatively few users in order to get a tagging
coverage of over 70% of the Yahoo! Mail incoming messages.

Given the scale and system integration constraints we
faced, we designed highly efficient classifiers that cope with
thousands of considered tags per each incoming message.
All our methods share the property of mapping the mes-
sages into a low dimensional latent space, thereby enabling
a more compact and efficient representation. Furthermore,
we borrowed two of the most successful email classifica-
tion approaches (Logistic Regression and Margin-based) and
showed how their training and predictions can be made faster
by using sampling and hierarchical classification techniques.



The speed-up was substantial enough to satisfy our perfor-
mance needs, classifying a message in less than 2 microsec-
onds.

An end-user facing classifier, which assumes almost no
user intervention or interaction, must obey very strict pre-
cision goals. Hence, after deciding on a shortlist of ranked
tags per message, each suggested tag has to pass another
filter deciding whether it is worth triggering or not. The
major challenge here was estimating the true coverage a tag
has on the population of untagged messages, which would
enable us to decide at which distinct certainty level we can
trigger each tag. We devised a novel method for achieving
such estimations.

A classifier is as good as its underlying features. While
our system inhibits us from time expensive analysis of email
body, there are numerous other features that we would like
to consider in the future. These include the number of re-
cipients in To: and Cc: fields, the length of a message, the
number and names of file attachments, style (html/plain)
signals, and more sophisticated subject tokenization tech-
niques.
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