Fast Random Projections

Edo Liberty

Joint work with Nir Ailon.
Dimensionality reduction

Original space

\[x_i, x_j \in \mathbb{R}^d \]

\[\| x_i - x_j \|_2 \]

Target space

\[\Psi : \mathbb{R}^d \rightarrow \mathbb{R}^k \]

\[\| \Psi(x_i) - \Psi(x_j) \|_2 \approx \| x_i - x_j \|_2 \]

\[(1 - \varepsilon) \| x_i - x_j \|_2 \leq \| \Psi(x_i) - \Psi(x_j) \|_2 \leq (1 + \varepsilon) \| x_i - x_j \|_2 \]

- \(\binom{n}{2} \) distances are \(\varepsilon \) preserved
- Target dimension \(k \) smaller than original dimension \(d \)
Simple task: search through your library of 10,000 images for near duplicates (on your PC).

Problem: your images are 5 Mega-pixels each. Your library occupies 22 Gigabytes of disk space and does not fit in memory.

Possible solution: Embed each image in a lower dimension (say 500). Then, search for close neighbors in the embedded points.

This can be done in memory on a moderately strong computer.
A distribution \mathcal{D} over $k \times d$ matrices Ψ s.t.

$$\forall x \in \mathbb{R}^{d-1} \quad \Pr_{\Psi \sim \mathcal{D}} [\|\Psi x\|_2 - 1 > \varepsilon] \leq 1/n^2$$

All $\binom{n}{2}$ pairwise distances are preserved w.p. at least $1/2$.

Johnson Lindenstrauss Lemma

Lemma (Johnson Lindenstrauss 84)

\(\Psi = \text{uniformly chosen } k \text{ dimensional subspace (projection)} \)

\[
\Pr[|\|\Psi x\|_2 - 1| > \varepsilon] \leq c_1 e^{-c_2 \varepsilon^2 k}
\]

\[
k = \Theta(\log(n)/\varepsilon^2) \quad \rightarrow \quad \Pr \leq \frac{1}{n^2}
\]

Definition

Such distributions are said to exhibit the JL property.
What is this good for?

We get:
- Target dimension k independent of d
- Target dimension k logarithmic in n
- Ψ chosen independently of input points

These make random projection extremely useful in:
- Linear Embedding / Dimensionality reduction
- Approximate-nearest-neighbor algorithms
- Rank k approximation
- ℓ_1 and ℓ_2 regression
- Compressed sensing
- Learning

...
The distribution over the choice of Ψ is rotation invariant, thus:

$$\Pr[|\|\Psi x\|_2 - 1| > \varepsilon] = \Pr_{x \sim U(S^{d-1})}[|\|l_k x\|_2 - 1| > \varepsilon]$$

Informally: projecting a **fixed vector** on a **random subspace** is equivalent to projecting a **random vector** on a **fixed subspace**.

From an isoperimetric inequality on the sphere, the norm of the first k coordinates of a random unit vector is strongly concentrated around its mean.
Lemma (Frankl Meahara 87)

\[\psi(i, j) \sim N(0, \frac{1}{\sqrt{k}}) \quad \rightarrow \quad \text{JL property.} \]

Proof.

Due to the rotational invariance of the Gaussian distribution:

\[\| \psi x \|_2 \sim \sqrt{\frac{1}{k} x_k^2} \approx N(1, \frac{1}{\sqrt{k}}) \]

Which gives the JL property
Dense i.i.d. distributions

Lemma (Achlioptas 03, Matousek 06)

\[\Psi(i, j) \in \{+1, -1\} \text{ uniformly} \rightarrow \text{JL property.} \]
\[\Psi(i, j) \sim \text{any subgaussian distribution} \rightarrow \text{JL property.} \]

Proof.

\[\| \Psi x \|_2^2 = \sum_{i=1}^{k} \langle \Psi(i), x \rangle^2 = \sum_{i=1}^{k} y_i^2 \]

The random variables \(y_i \) are i.i.d. and sub-Gaussian (Due to Hoeffding).

The proof above is due to Matousek.
The need for speed

All of the above distributions are such that:

- Ψ requires $O(kd)$ space to store.
- Mapping $x \mapsto \Psi x$ requires $O(kd)$ operations.

Example: projecting a 5 Megapixel image to dimension 500:

- Ψ takes up roughly 10 Gigabytes of memory.
- It takes roughly 5 hours to compute $x \mapsto \Psi x$.
 (very optimistic estimate for a 2Ghz CPU)
Sparse i.i.d. distributions

Can the projecting matrix be made sparser?

- Dasgupta, Kumar, Sarlos 09
- Kane, Nelson 10
- Braverman, Ostrovsky, Rabani 10

Lemma (Kane, Nelson 10)

Number of non zeros in Ψ can be $O(d \log(n) / \varepsilon)$, factor ε better than naive.

Lemma (Dasgupta, Kumar, Sarlos 09)

This cannot be improved much.

Proof: Consider input vectors like $[0, 0, 1, 0, 0, \ldots, 0, 1, 0]^T$

Can the projection be sparser if the input vectors are not sparse?
Sparse i.i.d. distributions

If the vectors are dense, the projection can be sparse!

Lemma (Ailon Chazelle 06, Matousek 06)

For some $q \in O(\eta^2 k) \leq 1$:

$$\psi(i, j) = \begin{cases}
1/\sqrt{q} & \text{w.p. } q/2 \\
-1/\sqrt{q} & \text{w.p. } q/2 \\
0 & \text{w.p. } 1-q.
\end{cases}$$

for x such that $\|x\|_\infty/\|x\|_2 \leq \eta$ (i.e. not sparse). **→ JL property**
FJLT: random-sign Fourier + sparse projection

Lemma (Ailon, Chazelle 06)

Let Φ be HD:

- H is a Hadamard transform
- D is a random ± 1 diagonal matrix

$$\forall x \in S^{d-1} \quad \text{w.h.p.} \quad \|\Phi x\|_\infty \leq \sqrt{k/d}$$
FJLT: random-sign Fourier + sparse projection

\[x \in S^{d-1} \]

\[\| \Phi x \|_2 = O\left(\sqrt{\frac{k}{d}} \right) \]

\[(S \Phi x) \in \mathbb{R}^k \]

\[\| S \Phi x \|_2 \approx \| x \|_2 \]

Preprocess: Random-sign Fourier

Requires \(O(d \log(d)) \) operations

Project: Sparse projection matrix

Contains \(O(k^3) \) non zeros in expectation

Lemma (Ailon, Chazelle 06)

After the rotation, an expected number of \(O(k^3) \) nonzeros in \(S \) is sufficient for the JL property to hold.
FJLT: random-sign Fourier + sparse projection

\[x \in S^{d-1} \]

Preprocess: Random-sign Fourier
Requires \(O(d \log(d)) \) operations

\[\Phi x \|
\]

Project: Sparse projection matrix
contains \(O(k^3) \) non zeros in expectation

Lemma (Ailon, Chazelle 06)

\(S\Phi \) exhibits the JL property

Computing \(x \mapsto S\Phi x \) requires \(O(d \log(d) + k^3) \) operations

This is \(O(d \log(d)) \) if \(k \lesssim d^{1/3} \)
The belief is that \(O(d \log(d)) \) time is possible for JL property for all \(k \).
Can we remove this constraint by derandomizing the projection matrix?

Consider the distribution $\Psi = AD$:
- A is a fixed $k \times d$ matrix.
- D is a diagonal matrix, $D(i, i) = s(i)$ (Rademacher).

We have that:

$$\|ADx\|_2 = \left\| \sum_{i=1}^{d} A^{(i)} D(i, i) x(i) \right\|_2 = \left\| \sum_{i=1}^{d} A^{(i)} x(i) s(i) \right\|_2 = \|Ms\|_2$$

where $M^{(i)} = A^{(i)} x(i)$.
Lemma ((L, Ailon, Singer 09) derived from Ledoux, Talagrand 91)

For any matrix M:

$$\Pr \left[|\| Ms \|_2 - \| M \|_{Fro} | \geq \varepsilon \right] \leq 16e^{-\varepsilon^2/32\|M\|_2^2}$$

- Since $Ms = ADx$
- if $\|M\|_{Fro} = 1$ (true if A is column normalized).
- and $\|M\|_2 = O(k^{-1/2})$.

$$\Pr \left[|\| ADx \|_2 - 1 | \geq \varepsilon \right] \leq c_1 e^{-c_2\varepsilon^2 k}$$

We get the JL property
FJLT using dual BCH codes

Holder’s inequality

\[\|M\|_{2\rightarrow 2} \in O \left(\|A^T\|_{2\rightarrow 4} \|x\|_4 \right) \]

Lemma

\(A \leftarrow \text{four-wise independent code matrix (concatenated code matrices)} \)

- \[\|A^T\|_{2\rightarrow 4} \in O(d^{1/4}k^{-1/2}). \]
- Computing \(z \mapsto Az \) requires \(O(d \log(k)) \) operations.

Lemma

\(\Phi \leftarrow \text{concatenated random-sign Fourier transforms} \)

- \[\|\Phi x\|_4 = O(d^{-1/4}) \text{ w.h.p.} \]
- Computing \(z \mapsto \Phi z \) requires \(O(d \log(d)) \) operations.
Lemma (Ailon, Liberty 08)

*Exhibits JL property and applicable in time $O(d \log d)$
*Construction exists for $k \lesssim d^{1/2}$.

The constraint on k is weaker but still there...
Motivation from compressed sensing...

We want to get rid of the constraint on k altogether.

On the one hand:
Preprocessing becomes a bottleneck for $k \in \Omega(\sqrt{d})$. We need to avoid it.

On the other hand:
Sparse vectors seem to require it.

There is hope:
Sparse Reconstruction (Compressed Sensing) constructions naturally deal with reconstructing sparse signals...
Motivation from compressed sensing...

Definition (Restricted Isometry Property (RIP))

For all r-sparse vectors x:

$$(1 - \varepsilon)\|x\|_2 \leq \|\Psi x\|_2 \leq (1 + \varepsilon)\|x\|_2$$

Lemma (Rudelson, Vershynin 08, Candes, Romberg, Tau 06)

$$\Psi \leftarrow \frac{r \log^4(d)}{\varepsilon^2} \text{ random rows (frequencies) from Hadamard matrix, then w.p. } \Psi \text{ is RIP.}$$

- The same approximate isometric condition as random projections
- Deals with sparse vectors without preprocessing
- No constraint (e.g. \sqrt{d} upper bound) on r
- Very simple construction
Almost optimal JL transform

\[k = O \left(\log(n) \text{ polylog}(d) / \varepsilon^4 \right) \]

Hadamard Matrix

\[
\begin{pmatrix}
H
\end{pmatrix}
\]

RIP

\[
\begin{pmatrix}
\Phi
\end{pmatrix}
\]

JL property

\[
\begin{pmatrix}
+1 & -1 \\
-1 & \ddots & -1
\end{pmatrix}
\]

Lemma

For any set \(X \) of cardinality \(n \), with constant probability:

\[
\forall x \in X \quad (1 - \varepsilon) \| x \|_2^2 \leq \left\| \frac{1}{\sqrt{k}} \Phi Dx \right\|_2^2 \leq (1 + \varepsilon) \| x \|_2^2.
\]

- Fast for all \(k \).
- Very simple construction (application time is \(O(d \log(d)) \))
Almost optimal JL transform

\[r = O\left(\frac{\log(n)}{\epsilon^2}\right) \]

\[x = \hat{x} + \tilde{x} \]

- \(\hat{x} \) is the \(r \)-sparse vector containing the \(r \) largest entries in \(x \).
- \(\tilde{x} \) contains the rest. \(\|\tilde{x}\|_\infty \leq 1/\sqrt{r} \).
Almost optimal JL transform

\[r = O \left(\log \left(\frac{n}{k^{1/2}} \right) \right) \]

\[k = O \left(\log(n) \log^4(d) / \epsilon^4 \right) \]

Lemma (Rudelson, Vershynin 08)

w.p. \(\forall \ x \in X \)

\[\left\| \frac{1}{\sqrt{k}} \Phi D \hat{x} \right\|^2 = \| \hat{x} \|^2 + O(\epsilon) \]

Using the RIP property as black box.
Almost optimal JL transform

\[2 \begin{pmatrix} k^{-1/2} \Phi D \end{pmatrix} \begin{pmatrix} \hat{x} \end{pmatrix}^T = O\left(\epsilon\right) \]

Lemma

\[w.p. \quad \forall \ x \in X \quad \frac{2}{k} (\Phi D\hat{x})^T \Phi D\hat{x} = O(\epsilon) \]

Not hard to show using Hoeffding’s inequality. (Note that this function is linear in random bits supporting \(\hat{x} \))
Almost optimal JL transform

\[
\left\| k^{-1/2} \Phi D \right\|_2^2 = \| \tilde{x} \|_2^2 + O(\epsilon)
\]

Main technical lemma:

Lemma (Extension of Rudelson and Vershynin, and Talagrand.)

\[
w.p. \quad \forall \ x \in X \quad \left\| \frac{1}{\sqrt{k}} \Phi D \tilde{x} \right\|^2 = \| \tilde{x} \|^2 + O(\epsilon)
\]
Almost optimal JL transform

From Talagrand: \[\left\| \frac{1}{\sqrt{k}} \Phi D\tilde{x} \right\| = \|\tilde{x}\| + O(\varepsilon) \] if:

\[\left\| \frac{1}{\sqrt{k}} \Phi D\tilde{x} \right\|^2_2 \in O\left(\frac{\varepsilon^2}{\log(n)}\right) \]

where \(D\tilde{x} \) is diagonal matrix with \(\tilde{x} \) on its diagonal.

By triangle inequality:

\[\left\| \frac{1}{\sqrt{k}} \Phi D\tilde{x} \right\|^2_2 = \left\| \frac{1}{k} D\tilde{x} \Phi^t \Phi D\tilde{x} \right\|_2 \leq \left\| \frac{1}{k} D\tilde{x} \Phi^t \Phi D\tilde{x} - D^2_{\tilde{x}} \right\|_2 + \left\| D^2_{\tilde{x}} \right\|_2 \]

By the choice of \(\tilde{x} \):

\[\left\| D^2_{\tilde{x}} \right\|_2 = \|\tilde{x}\|_\infty^2 \leq 1/r = \varepsilon^2 / \log(n) \]

To conclude the proof we need a similar bound for

\[\left\| \frac{1}{k} D\tilde{x} \Phi^t \Phi D\tilde{x} - D^2_{\tilde{x}} \right\|_2. \]
Lemma (Rudelson, Vershynin + careful modifications)

\[E_\Phi \left[\sup_{\|z\|_2 \leq 1, \|z\|_\infty \leq \alpha} \left\| D_z^2 - \frac{1}{k} D_z \phi^t \phi D_z \right\| \right] \in O \left(\frac{\alpha \log^2(d)}{\sqrt{k}} \right). \]

Substituting our choice of \(\alpha^2 = 1/r = \frac{\varepsilon^2}{\log(n)} \) and

\[k \in \Omega \left(\frac{\log(n) \log^4(d)}{\varepsilon^4} \right) \]

Satisfies the required bound and concludes the proof.
This approach seems to actually give dependence ε^{-3} instead of ε^{-4} as presented.

Krahmer and Ward 10 show that any RIP construction becomes a JL construction if you add a random sign matrix. This fixes the dependence on ε to the correct ε^{-2}. It also uses RIP constructions as a black box.

Future work:

- Eliminating the $\text{polylog}(d)$ factor for JL with no restriction on k. This will also give an improved RIP construction.
- Improving our understanding of random projections for sparse input vectors, e.g. bag of words models of text documents.
Fin