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ABSTRACT
E-commerce applications rely heavily on session-based recommen-
dation algorithms to improve the shopping experience of their cus-
tomers. Recent progress in session-based recommendation algo-
rithms shows great promise. However, translating that promise to
real-world outcomes is a challenging task for several reasons, but
mostly due to the large number and varying characteristics of the
available models. In this paper, we discuss the approach and lessons
learned from the process of identifying and deploying a successful
session-based recommendation algorithm for a leading e-commerce
application in the home-improvement domain. To this end, we ini-
tially evaluate fourteen session-based recommendation algorithms
in an offline setting using eight different popular evaluation metrics
on three datasets. The results indicate that offline evaluation does
not provide enough insight to make an informed decision since there
is no clear winning method on all metrics. Additionally, we observe
that standard offline evaluation metrics fall short for this application.
Specifically, they reward an algorithm only when it predicts the
exact same item that the user clicked next or eventually purchased.
In a practical scenario, however, there are near-identical products
which, although they are assigned different identifiers, they should
be considered as equally-good recommendations. To overcome these
limitations, we perform an additional round of evaluation, where
human experts provide both objective and subjective feedback for
the recommendations of five algorithms that performed the best in
the offline evaluation. We find that the experts’ opinion is oftentimes
different from the offline evaluation results. Analysis of the feed-
back confirms that the performance of all models is significantly
higher when we evaluate near-identical product recommendations
as relevant. Finally, we run an A/B test with one of the models that
performed the best in the human evaluation phase. The treatment
model increased conversion rate by 15.6% and revenue per visit by
18.5% when compared with a leading third-party solution.
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1 INTRODUCTION
Session-based recommendations are mission-critical in e-commerce
applications where customer intent across visits is weakly correlated.
A representative example is the home-improvement domain where
users visit the online store with a different purpose each time. As
a result, their shopping history may not be very informative with
respect to their current needs. For example, knowing which furniture
a user purchased in the past to redesign her living room does not
provide much insight into the tools she needs in the current visit to
renovate her bathroom. Same-session actions, however, are very in-
formative. For example, a customer currently shopping for a shower
head and shower tiles will likely need a soap holder and grout.

There is a large body of work in the field of session-based recom-
mender systems [20, 29]. Recently-published deep learning archi-
tectures [18, 19, 28, 30] show promise and report improved offline
metrics compared to previous state-of-the-art systems. However,
such models are hard to compare because they are evaluated on
different datasets and evaluation metrics. In addition, recent stud-
ies [6, 22, 23] show that non-deep-learning baseline models, when
properly tuned, can perform on par with or better than complex deep-
learning architectures. In this work, we present the process of finding
the most promising session-based model to put into production for a
large home improvement e-commerce application, i.e., The Home
Depot (THD). We first use the framework provided by Ludewig et
al. [23] and evaluate fourteen session-based recommendation algo-
rithms over three datasets from the home improvement domain, i.e.,
outdoors, tools, and appliances. We confirm recent findings [23] and
conclude that there is no single model that universally outperforms
all others across all metrics and datasets. For example, SR-GNN
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[30], a cutting-edge deep learning model for session-based recom-
mendations, outperforms all other methods on the task of predicting
the immediate next item. At the same time, simple variations of
nearest neighbor algorithms outperform deep learning architectures
when evaluating the prediction of a ranked list of items. As a result,
unless we care about only one of these metrics, i.e., predicting the
next item vs. a list of items, offline evaluation does not provide
sufficient guidance regarding which algorithm(s) to advance to the
A/B testing or production stages.

Offline evaluation is complicated not just by the range of per-
formance metrics. Recent research [21, 27] shows the evaluation
metrics can be unreliable when comparing different algorithms be-
cause they ignore problem-specific and domain-specific details. Mo-
tivated by this work, we observe that the way offline evaluation is
performed is far from ideal given the particular characteristics of the
home improvement domain. In particular, an algorithm is rewarded
only when it recommends the exact product that was clicked by
the user in the session. When a model recommends a product very
similar to the one clicked by the user (but not exactly the same) the
prediction is needlessly penalized.

This approach is problematic for domains where two or more
products often share many similarities, differ only on minor details,
yet are assigned a different product identifier. A representative do-
main where this is evident is the home-improvement domain. This is
illustrated in Figure 1 where three algorithms A, B, and C are given a
partial shopping cart <refrigerator, dishwasher, ?> and are measured
on their ability to guess the third item (noted by ?) added in that cart,
which we know from the actual data that it was a specific microwave.
Algorithm A recommends a different microwave which shares many
similarities (i.e., price, brand, dimensions, color, and style) with the
actually-bought microwave. Algorithm B recommends an electric
range, and Algorithm C recommends a garbage disposal part. Since
all predicted products are different from the most recent product
added to cart, all offline evaluation metrics that focus on measuring
the prediction accuracy will consider those predictions as equally
bad. However, it is clear in this example that the prediction of al-
gorithm A is far better than the prediction of algorithm B which is
more relevant than the prediction of algorithm C.

To account for cases like the one described, we performed an
additional round of evaluation. Human experts of our in-house val-
idation team were asked to provide feedback in terms of the level
of relevancy of recommendations. We distinguished three levels of
feedback: objective relevant, subjective relevant, and irrelevant. In
the example of Figure 1 the recommendation of algorithm A would
be labeled as objective relevant, the recommendation of algorithm B
would be considered as subjective relevant, while the recommenda-
tion of algorithm C would be irrelevant. We selected five algorithms
that performed the best in the offline experiments and evaluated their
performance in about 1,000 sessions involving 35,238 recommenda-
tions, using the same datasets as in the offline evaluation (outdoors,
tools, appliances).

The result of the study shows that the ranking of the models
determined by various offline evaluation methods does not agree
with the ranking using expert opinion. This extends recent find-
ings [2, 24, 26, 27] showing that there is a significant discrepancy
between offline metrics obtained from historical data, versus user
studies, and live A/B tests. In particular, two deep learning methods

(GRU4REC [13] and STAMP [19]) that performed adequately but
did not rank first in the offline evaluation, were the winners in the
human expert study. Interestingly, the deep learning architecture that
performed best in the offline evaluation in terms of predicting the im-
mediate next item (SR-GNN) ranked third. Baseline methods based
on nearest neighbors that reported the best performance in terms of
precision and recall ranked in the last positions. This suggests that,
for the home improvement domain, deep learning models are more
successful compared to baseline methods. Analysis of the feedback
showed that the performance of GRU4REC and STAMP improved
significantly when we evaluated recommendations that were very
similar to the items in the ground truth as relevant. For example,
in this case, we considered as relevant the very similar microwave
recommended by Algorithm A in Figure 1, although its product iden-
tifier is different from the ones added to the cart. In the last part of
this work, we performed an A/B test to compare the performance of
STAMP (one of the winning models of the evaluation using human
experts) with an existing third-party solution. The results of the A/B
test showed that STAMP increased the conversion rate by 15.6%
and the revenue per visit by 18.5% and the difference is considered
statistically significant.

Our contributions are as follows: (1) We confirm and extend, to
the home improvement domain, recent findings that baseline session-
based recommendation models can actually outperform complex
deep learning architectures that are considered to be state-of-the-art
in popular offline metrics such as precision and recall. (2) Motivated
by the limitations of offline metrics, we conduct a large study where
human experts provide objective and subjective feedback for the
recommendations of five algorithms in three datasets and conclude
that two deep learning models are the best in terms of objective and
subjective relevance. (3) We provide insights from the comparison
of the results from traditional evaluation metrics and annotations
provided by human subjects. The most important lesson learned
is that the ranking of models in terms of their performance in the
offline evaluation does not always agree with the ranking of these
models when evaluating them using labels from human experts. This
is mostly due to the fact that although some models are able to come
up with relevant recommendations, they are needlessly penalized
when using the typical offline evaluation metrics that require the
recommended item to match exactly the item in the ground truth. To
the best of our knowledge this is the first study that attempts to draw
conclusions by having a unified view of results from both traditional
offline evaluation metrics and results from human experts in the
session-based recommendations setting. (4) We share the results of
an A/B test conducted using one of the models that performed the
best in evaluation using human experts and showcase its superiority
over a third-party solution. (5) Our lessons learned towards finding
the best session-based algorithm for our application scenario can be
helpful to researchers in industrial and academic settings.

2 RELATED WORK
Wang et al. [29] and Ludewig and Jannach [20] offer a detailed
analysis of the most recent methods and advancements in the area
of session-based recommendations. This study compares different
session-based recommendation methods using several standard met-
rics provided in the literature. It further compares the correlation of
such metrics to judgments by human experts.
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Algorithm A Algorithm B Algorithm C 
Items currently in the cart Items that will be added 

to the cart next

Recommendations from 3 algorithms

Figure 1: Given two products added in a user’s cart, three algorithms came up with three different predictions. Using traditional
evaluation metrics, all predictions will be considered as irrelevant since none of the predicted product ids matches exactly the product
id that the user added to her cart next. However, for a human it is obvious that there are different levels of relevance: (1) the prediction
of Alg. A is very similar to the actual item added to cart, (b) the prediction of Alg. B is not similar to the item added to cart next,
however, it is relevant to the items that the user has in her cart, (c) the prediction of Alg. C is irrelevant.
Comparison of session-based recommendation methods: Ludewig
et al. [20, 23] provide a framework that implements a suite of state-
of-the-art algorithms and baselines for session-based recommenda-
tion. The authors compare baseline and state-of-the-art algorithms
in session-based recommendations using offline evaluation metrics.
They conclude that the improvement gained by deep learning ar-
chitectures is often limited. The authors further performed a user
study in the music domain, where they evaluated five session-based
algorithms [21] in terms of their effect on the quality perception
of the users. The finding is that, for the task of next track recom-
mendation, simple mechanisms are competitive with complex deep
learning architectures. Finally, the authors in [22] conclude that there
is a need for more studies to understand the characteristics of suc-
cessful recommender systems in different domains. Working in a
similar direction, we first apply the framework to three datasets in
the home improvement domain and corroborate the authors’ findings.
Motivated by the unique characteristics of the home improvement
domain and the inconclusive offline evaluation results, we further
evaluate the best performing algorithms using human experts. To
the best of our knowledge, our work is the first that contrasts offline
results with human perceptions in the home improvement domain.
Analysis of the study showed, for the first time, that in the home
improvement domain there is indeed merit from using deep learning
models, as all models in this category outperformed the baselines.
In addition, our work introduces the idea that recommendations that
are similar to the actual user actions should be considered as equally
good. Finally, we performed an A/B test with real users showing the
improved performance of a particular deep learning model in the
home improvement domain.
Limitations of using offline evaluation metrics in recommender
systems: Wagstaff [27] observes that evaluation metrics (such as
classification accuracy and RMSE) cannot be used reliably to com-
pare different algorithms since they ignore or remove problem-
specific details. In the home improvement domain, it may be too
strict to require an algorithm to predict the exact same product that a
user clicked or bought. An algorithm that can predict similar items is
probably as good. Cremonesi et al. [5] performed a user study where
seven different movie recommender systems were evaluated by real
users. The study showed that the objective quality of an algorithm
is not a reliable predictor of the quality of the recommendations
as they are perceived by the users. Garcin et al. [7] evaluated the
performance of three algorithms in the news recommendation do-
main, first in an offline setting and then by running an A/B test. The
ranking of the models in the online experiment was the reverse of

that in the offline evaluation, which puts in question the reliability of
the offline evaluation studies. Beel and Langer [2] compare results
from three different evaluation methods: offline, online, and user
studies. The paper concludes that in the domain of research paper
recommendation, results from offline evaluation contradict results
from online evaluations and user studies, while results from online
evaluations correlate well with results from user studies. Gomez-
Uribe and Hunt [9] admit that offline evaluation is convenient since
a large number of algorithms can be tested relatively quickly, which
prunes the candidate variants for the A/B tests. However, the authors
underline the fact that offline evaluation assumes users would have
behaved the same given the new algorithm. This is a challenging as-
sumption because the whole purpose of a new algorithm is to change
user behavior. As a result, offline evaluation is used only as an in-
termediate step to choose which algorithms to move to the A/B test.
Rossetti et al. [26] conduct a study comparing offline and online per-
formance of four different movie recommendation algorithms. The
study showed that the online and offline ranking of the algorithms
is different. Kamehkhosh and Jannach [15] study whether offline
evaluation metrics correlate with users’ quality perceptions in the
music recommendation domain. Their work showed that methods
that focus on both coherence of songs recommended and on improv-
ing accuracy yield the best performance in both offline evaluation
and user studies. The studies described above outline the discrep-
ancy between offline experiments, user studies, and live experiments.
This discrepancy motivated us to compare three evaluation modes
for session-based recommendations in the home improvement do-
main: evaluation using traditional offline metrics, evaluation using
labels from human experts, and evaluation using an A/B test. To our
knowledge, this is the first study of its kind.

3 BENCHMARK ALGORITHMS AND
DATASETS

Table 1 presents the fourteen models (eight baseline and six deep
learning) we evaluated for session-based recommendations. Detailed
description of the models can be found in the original works and in
[20, 22]. We used three real-world datasets coming from THD that
represent the diversity of products: outdoors, tools, and appliances.
We sampled sessions for a specific representative time period and
focused only on add-to-cart actions with greater than two and less
than seven products added to the cart. For each category, we dis-
carded sessions containing a product from a different category. The
detailed dataset statistics (including train, validation, and test splits)
are reported in Table 2.
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Model Description
Baselines
AR [1] A simplified version of Association Rules where the algorithm recommends the item that most-frequently co-occurs with the last

item in the session.
SR [16] Sequential Rules is a variation of AR that weights the co-occurrence based on the order of the items in the session.
SKNN [3, 11, 14, 17] Session-based K-Nearest Neighbor considers all the items of a session: given a session, the method computes similarities between

sessions and recommends items that appear in the most similar sessions.
V-SKNN [20] Vector multiplication SKNN extends the SKNN model by assigning higher weight to the most recent items of a session when

computing similarities between sessions.
CT [25] Context Trees is a non-parametric variable-order Markov model that is able to learn static sequential patterns.
STAN [8] Sequence and Time Aware Neighborhood extends V-SKNN by using three different decay factors in the process of computing

session-level similarity and item relevance.
V-STAN [22] Vector Sequence and Time Aware Neighborhood combines STAN and V-SKNN by adding a sequence-aware item scoring process

and an inverse-document-frequency weighting scheme to promote less popular items.
SMF [20] Session-based Matrix Factorization model that combines factorized Markov chains with classic matrix factorization.
Deep Learning
GRU4REC [12, 13] GRU4REC, uses gated recurrent units [4] to capture dependencies among items in a session.
NARM [18] Neural Attentive Recommendation Machine extends GRU4REC by introducing a hybrid encoder with an attention mechanism into

the recurrent network to model the user’s sequential behavior.
STAMP [19] Short-Term Attention/Memory Priority model captures both users’ general interests from the long-term memory of a session context

and users’ current interests from the short-term memory of the last clicks.
NEXTITNET [31] NEXTITNET is a generative model that directly estimates the distribution of the output item sequence based on the input item

sequence.
CSRM [28] Collaborative Session-based Recommendation Machine is a hybrid deep learning model that applies collaborative neighborhood

information to session-based recommendations.
SR-GNN [30] Session-based Recommendation with Graph Neural Networks models sessions as directed graphs which allows to capture complex

transition of items. An attention network is also deployed to fuse the global preference and the local interest of the current session.
Table 1: Benchmark models evaluated for session-based recommendation in the home improvement domain.

Dataset Split Actions Sessions Items
Training 2,271,458 722,260 43,798

Outdoors Validation 114,247 35,383 14,398
Test 377,230 126,442 21,193

Training 1,346,326 445,326 25,066
Tools Validation 42,066 14,215 6,399

Test 187,333 64,341 13,188
Training 456,686 161,649 10,079

Appliances Validation 14,294 5,030 2,924
Test 110,164 38,595 5,776

Table 2: Dataset statistics. Each action represents the fact that
a user added to her cart an item (i.e., actions are add-to-cart
actions) and each session contains an ordered set of add-to-cart
actions.

4 EVALUATION USING OFFLINE
TRADITIONAL METRICS

In the first part of this work we use the benchmark algorithms de-
scribed in Table 1 and apply them to the datasets reported in Table
2. We evaluate their performance using eight popular metrics and
conclude that offline evaluation does not provide enough evidence
in the process of selecting the best model to advance to an A/B test.

4.1 Evaluation Setup and Metrics using
Traditional Metrics

Data splits: For each category we split the data (Table 2) into three
sets in subsequent time periods: (1) training set from the first time
period, (2) validation set from the second time period immediately
after the first time period, and (3) test set from the third time period
immediately after the second time period. Since none of the models

can handle cold-start recommendations, we pruned all sessions that
contained new products in the validation and test set.
Hyperparameter tuning: To find the best parameters for each
model (baselines and deep neural networks) we performed hyper-
parameter tuning using the validation set. We followed the same
process as described in [22, 23], i.e., we applied a random search
approach with 100 iterations (50 iterations for NARM and SR-GNN
that were significantly slower compared to the other models). We
used the same values for the search space for all hyperparameters
as in previous work [22, 23]. Finally, all models were optimized for
mean reciprocal rank.
Evaluation Metrics: All results are reported on the test set. Metrics
fall into three categories based on (1) predicting the immediate next
item that was added to cart (2) predicting the N next items added to
cart (3) coverage and popularity-based metrics. For (1) these metrics
are: hit rate (HR), mean reciprocal rank (MRR), and normalized
discounted cumulative gain (NDCG) [10]. For (2) the metrics are:
precision (Prec), recall (Rec), and mean average precision (MAP)
[10]. For (3) the metrics are the transactional coverage (Cov) and
popularity (Pop). Coverage is defined as the fraction of number of
distinct items that a model can predict in the top N positions over the
number of distinct items that appear in the training set. Popularity
is defined as the average popularity of all recommended items in
the top N positions, where popularity for each item is computed
from the training set. Although deep neural network models are
optimized for the first task (i.e., predict the immediate next item), in
a real-world application a session-based recommendation algorithm
is expected to recommend a list of items to add next to the user’s cart.
For this reason, metrics that measure the accuracy of a list of rec-
ommendations (i.e., Prec, Rec, MAP) are also of great importance.
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Additionally, in our application scenario, the “rich get richer” effect
is evident, since a small percentage of products are very popular and
have a large number of purchases, where the vast majority of prod-
ucts belong to the long tail with a very small number of purchases.
As a result, increasing customer awareness of the full catalog of a
retailer is also a goal, in addition to optimizing for conversions. In
other words, it is highly desirable for an algorithm to report high cov-
erage and low popularity while maintaining conversion. To compute
the evaluation metrics for each model we follow the same process
as in previous work [22, 23] and for each session we reveal each
interaction sequentially. For each revealed interaction, we generate
recommendation lists and compare them to the ground truth data in
order to compute the values for the evaluation metrics.

4.2 Results from Offline Evaluation
The results of the offline evaluation using the traditional accuracy
and coverage metrics are shown in Table 3. We also report training
times using CPU for baseline methods and GPU for deep learning
methods. All deep learning models are trained using one single GPU.
We choose the number of top-N recommendations to evaluate as
N = 5 which is smaller compared to what the literature reports
(N = 20) for two reasons: first, we wanted to be able to compare the
results with the evaluation using human experts and second, in our
e-commerce scenario, users can directly look at the top five recom-
mendations (which was also the case for the A/B test conducted).
For each category, we report with bold the best performing value
and we underline the second to best value from the other family
of algorithms. For each accuracy metric, we conduct a paired t-test
between the best performing deep learning model and baseline and
indicate with an asterisk the cases that the difference is considered
statistically significant (p<.001). Below we present the major in-
sights, grouped by the three different metric categories discussed
above. Next, we discuss the overall performance of baseline and
deep learning approaches and also compare our findings with very
recent findings of the community.
Overall Comparison in terms of predicting the immediate next
item: For all three categories, SR-GNN consistently outperforms all
the other models in terms of HR, MRR, and NDCG. The second-best
model(s) in terms of HR and NDCG is either STAN or V-STAN for
all categories (STAN is the second-best for tools while V-STAN is
the second-best for outdoors and appliances). In terms of MRR, SR-
GNN is followed by CT for outdoors and appliances, while SR-GNN
is followed by V-STAN for tools.
Overall Comparison in terms of predicting a list of next items:
STAN and V-STAN outperform all the baseline and deep learn-
ing models in terms of precision, recall, and MAP for most of the
datasets. The only exception is the recall for tools and appliances
where STAN/V-STAN come second after SR-GNN. In terms of pre-
cision and MAP the performance of SR-GNN is the best among
the deep neural network models, however, it is worse compared to
V-STAN (outdoors, appliances) and STAN (tools).
Overall Comparison in terms of coverage and popularity: V-
SKNN and GRU4REC are the models that achieved the best per-
formance in terms of coverage. For outdoors and tools V-SKNN
is the best, followed by GRU4REC, while the reverse is true for
appliances. For popularity, GRU4REC consistently outperforms all

other models followed by SMF. In terms of baselines, V-SKNN is
the best (but worse compared to GRU4REC and SMF).
Comparison among baselines: Across the baseline models, STAN
and V-STAN outperform all other models in terms of all accuracy
metrics (HR, MRR, NDCG, precision, recall) with the exception
of MRR for outdoors and appliances. Consequently, our findings
agree with [22], i.e., V-STAN is a very strong approach that should
be included as a baseline in future evaluations of session-based
recommendations. V-SKNN and SKNN that perform similarly in
terms of accuracy metrics, follow the performance of STAN and V-
STAN in almost all accuracy metrics (HR, NDCG, precision, recall,
MAP). At the same time, V-SKNN performs the best among the
baselines in terms of coverage and popularity.
Comparison among deep learning approaches: Among all deep
learning models, SR-GNN is the clear winner in terms of all accu-
racy metrics. This is a new observation which is different from the
main finding of [22] where it was not clear how to rank the deep
learning models, because of the variations of the performance of
the algorithms in different datasets. We believe that this may be
due to the particular characteristics of our domain. Also, this new
finding suggests that every e-commerce application needs to perform
this step of offline evaluation with traditional metrics using their
data in order to find which are the best performing methods. Other
than SR-GNN, we observe that there is not a clear ranking for the
other models, since we do not observe a consistent behavior among
accuracy metrics and across datasets. It is notable though that most
of the times, deep learning models (except for SR-GNN) perform
worse compared STAN and/or V-STAN. In terms of coverage and
popularity, GRU4REC ranks first, which agrees with [22].
Overall comparison: There is not a clear winning method. Al-
though it is expected that there is a trade-off between coverage and
accuracy metrics, in this case there is also no winning model across
all accuracy metrics. The big question for each e-commerce appli-
cation seems to be whether it focuses on optimizing for predicting
the immediate next item or a list of next items. In the first case, it
looks like SR-GNN is the best choice based on this offline evalua-
tion, while for the second case, baseline models such as STAN and
V-STAN look like a better option. In cases where an e-commerce
application focuses a lot on increasing the coverage, then good op-
tions are either V-SKNN or GRU4REC. Training times and scaling
is also a concern in real e-commerce applications since the models
need to train regularly using a large number of sessions. There are
deep learning models that can train very fast on a GPU (such as
GRU4REC and STAMP), making the process of putting those into
production relatively easy. However, other models (i.e., SR-GNN,
NARM) need a relatively long amount of time to train which makes
their adoption by real e-commerce applications more difficult.

5 EVALUATION USING HUMAN EXPERTS
We now present evaluation of the models using human experts. This
is a necessary step for two reasons. First, offline measurements did
not produce a clear winner, and, second, traditional metrics (HR,
MRR, NDCG, Prec, Rec, MAP) cannot capture the subtleties of the
home improvement domain, discussed in Section1.
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Dataset Metrics HR@5 MRR@5 NDCG@5 Prec@5 Rec@5 MAP@5 Cov@5 Pop@5 Training Time
AR 0.451 0.278 0.377 0.140 0.386 0.079 0.547 0.118 6.8s
SR 0.457 0.290 0.386 0.137 0.385 0.078 0.525 0.110 4.1s
SKNN 0.504 0.281 0.420 0.159 0.434 0.091 0.560 0.118 5.6s
V-SKNN 0.506 0.284 0.421 0.160 0.436 0.092 0.626 0.105 11.3s
CT 0.469 0.301 0.398 0.140 0.392 0.080 0.507 0.133 281s
STAN 0.509 0.288 0.428 0.160 0.436 0.092 0.569 0.113 5s

Outdoors V-STAN 0.516 0.290 0.434 *0.162 *0.441 *0.094 0.588 0.100 5.8s
SMF 0.479 0.300 0.403 0.144 0.402 0.082 0.364 0.087 1.66h
GRU4REC 0.470 0.293 0.396 0.140 0.393 0.080 0.590 0.064 0.26h
STAMP 0.467 0.291 0.390 0.146 0.405 0.083 0.506 0.116 0.39h
NEXTITNET 0.484 0.305 0.407 0.144 0.402 0.082 0.364 0.117 1.8h
NARM 0.483 0.297 0.403 0.147 0.407 0.083 0.535 0.111 9.4h
CSRM 0.484 0.296 0.402 0.147 0.407 0.083 0.510 0.109 1.12h
SR-GNN *0.526 *0.337 *0.448 0.157 0.439 0.091 0.423 0.123 30.5h
AR 0.379 0.234 0.318 0.115 0.327 0.066 0.581 0.067 3.2s
SR 0.380 0.240 0.321 0.115 0.328 0.067 0.567 0.064 3.4s
SKNN 0.428 0.235 0.354 0.134 0.374 0.078 0.599 0.071 3s
V-SKNN 0.417 0.236 0.347 0.128 0.360 0.074 0.700 0.055 3.3s
CT 0.374 0.236 0.316 0.113 0.324 0.066 0.526 0.090 245s
STAN 0.431 0.238 0.360 *0.135 0.376 *0.080 0.604 0.067 3.2s

Tools V-STAN 0.428 0.240 0.358 0.134 0.373 0.079 0.609 0.066 3s
SMF 0.396 0.243 0.330 0.120 0.343 0.069 0.395 0.049 0.60h
GRU4REC 0.379 0.233 0.317 0.115 0.327 0.066 0.599 0.028 0.16h
STAMP 0.387 0.240 0.323 0.119 0.340 0.069 0.592 0.061 0.2h
NEXTITNET 0.387 0.238 0.322 0.118 0.337 0.068 0.384 0.069 0.85
NARM 0.399 0.240 0.330 0.123 0.348 0.071 0.596 0.064 2.9h
CSRM 0.401 0.241 0.331 0.120 0.341 0.069 0.553 0.065 0.25h
SR-GNN *0.440 *0.275 *0.372 0.133 0.378 0.078 0.506 0.068 12.5h
AR 0.523 0.344 0.450 0.160 0.459 0.097 0.644 0.113 1s
SR 0.536 0.359 0.436 0.160 0.467 0.098 0.621 0.107 1s
SKNN 0.579 0.312 0.485 0.180 0.511 0.110 0.674 0.111 0.95s
V-SKNN 0.578 0.312 0.487 0.182 0.512 0.111 0.743 0.103 2.1s
CT 0.537 0.375 0.473 0.160 0.465 0.098 0.580 0.140 45.8s
STAN 0.580 0.316 0.491 0.183 0.517 *0.112 0.667 0.108 1s

Appliances V-STAN 0.583 0.318 0.493 *0.184 0.517 *0.112 0.667 0.107 1s
SMF 0.560 0.372 0.483 0.171 0.490 0.105 0.480 0.096 0.10h
GRU4REC 0.514 0.338 0.441 0.159 0.455 0.096 0.769 0.066 0.05h
STAMP 0.524 0.355 0.453 0.161 0.469 0.098 0.690 0.106 0.07h
NEXTITNET 0.562 0.379 0.487 0.167 0.483 0.102 0.670 0.109 0.19h
NARM 0.552 0.357 0.469 0.169 0.484 0.102 0.660 0.108 0.48h
CSRM 0.555 0.359 0.474 0.170 0.489 0.104 0.639 0.107 0.08h
SR-GNN *0.602 *0.396 *0.518 0.181 *0.522 0.111 0.594 0.106 1.9h

Table 3: Results on offline evaluation metrics on three datasets: outdoors, tools, and appliances. The highest value across all algorithms
is shown in bold. The highest value obtained by the other family of algorithms (baseline or deep neural network) is underlined. The
training time reported is when using a CPU for baseline models and a GPU for deep learning models. Stars indicate significant
differences according to a paired t-test between the best performing baseline and deep learning model for each metric (p<.001).

5.1 Algorithm Selection
Getting labels from humans is an expensive task, especially when
they are experts in the field. Since evaluating all fourteen algorithms
was cost-prohibitive, we chose five algorithms based on their offline
performance, namely V-SKNN, V-STAN, GRU4REC, STAMP, and
SR-GNN. V-SKNN showed the best or second-best coverage in all
datasets without falling too far behind in terms of accuracy metrics.
V-STAN reported best or second-best performance in terms of preci-
sion, recall, and MAP in all datasets. GRU4REC reported the best or
second-best coverage in two datasets and satisfactory performance in
the accuracy metrics. STAMP performed slightly better compared to

the GRU4REC model in terms of accuracy metrics with a small de-
crease in coverage. SR-GNN reported the best performance in terms
of HR, MRR, and NDCG in all datasets and best or second-best
performance for the other accuracy metrics. Note that GRU4REC,
STAMP, and SR-GNN are deep learning models while V-SKNN and
V-STAN are not.

5.2 Labeling Task
The next step was to generate the test set for the expert validators.
To this end, we used a subset of the predictions produced by the
models using the test set described in Section 4. To unify the task,
we selected uniformly at random shopping sessions of 5 items S =
{i1, i2, i3, i4, i5} where it is an item from the catalog and t is its
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insertion order to the cart. We use the items in S1 = {i1, i2} as the
context for each model to generate a set of 5 item recommendations
R = {r1, ..., r5}. We use the set S2 = {i3, i4, i5} as the ground truth
for the recommended items. We asked the validators to compare
each recommended item ri ∈ R with the items in S1 and S2 and
provide a label.

Figure 2 shows an example of a session with the recommendations
generated by the model. For each session, we showed the validators
a picture that consisted of the three sets S1, S2, and R along with
descriptions. S1 is presented as “items currently in the cart”, S2 as
“items that will be added to the cart next”, and R as “recommenda-
tions”. To give validators enough context for each item (product),
we provided its picture, identifier, title, and price. There was also
the option to click on the picture of each product and get access to
its full information as it appears on the web page of THD. For each
triplet < S1, S2, ri > where ri ∈ R, the validators had to provide one
of three labels:
Objective relevant: a recommendation was assigned this label if
the item was the same or very similar to one of the items in S2. We
consider two products to be very similar if they are interchangeable
which is indicated when they serve the same functionality, belong
to the exact same category (e.g., outdoor lounge chair), share the
same style (e.g., same color), and share the same or similar values
for basic attributes such as price and material. This was indicated by
a ‘thumbs up’ icon in the labeling interface.
Subjective relevant: recommendations were assigned this label
when they were not objective relevant but they made good sense
from a customer perspective when taking into account the items in
S1. This was indicated by a ‘check’.
Irrelevant: a recommendation was assigned this label if the recom-
mendation was neither objective nor subjective relevant. This was
indicated by a ‘thumbs down’ icon.

For example, in Figure 2, the first two recommendations received
a ‘thumbs up’ which corresponds to objective relevant. The outdoor
patio chaise lounge and rocking chair were not exact matches to
those in S2, but they were objectively interchangeable with i4 and
i3 respectively. The third and fourth recommendations received a
subjective relevant label (‘check’). An outdoor patio ottoman did
not appear in S2, but it was relevant given the fact that the customer
already added an outdoor patio swivel lounge chair to the cart. An
outdoor accent table could be considered interchangeable with the
coffee table in S2, but they belong to different categories (outdoor
coffee table vs. outdoor side table) and therefore they were assigned
the subjective relevant label. Given that the cart contained a loveseat
and a lounge chair, a picnic table was not deemed reasonable or
relevant by the experts (‘thumbs down’).

In this experiment, recommendations were not penalized if their
ordering did not match the order that the items were added to the
cart. Finally, the labels provided for the recommendations within the
same session were independent from each other. That is, the decision
about the label that would be assigned to < S1, S2, r1 > did not affect
the decision about the label what would be assigned to < S1, S2, r2 >.
For example, if in Figure 2 there was a sixth recommendation of
an outdoor patio rocking chair which was similar to the chair in S2
then this would be considered as objective relevant and there would
be no penalty for providing two recommendations of outdoor patio
rocking chairs.

5.3 Results from Evaluation using Human
Experts

We evaluated sessions from three datasets; 327 sessions in outdoors,
339 sessions in tools, and 318 sessions in appliances. All models
were evaluated using the exact same sessions. This resulted in 24,600
annotations: 8,175 for outdoors, 8,475 for tools, and 7,950 for appli-
ances. Since the validators were part of the professional validation
team, there was no need to identify spam users (as opposed to ex-
periments within Amazon Mechanical Turk). We ensured that our
validators had clear instructions. To this end, we provided exam-
ples before validation, we conducted Q&A sessions, and we also
inspected the labels provided at the beginning of the evaluation pro-
cess for each category, pointing out possible shortcomings in the
labeling process that were subsequently fixed.

For some sessions, more than one models came up with the exact
same recommendations. This resulted in having multiple labels for
the same triplet < S1, S2, ri >. Since there were multiple validators
involved in the process of evaluation and the task required to use their
critical thinking, there was a possibility that these labels did not agree.
To resolve the disagreements, we applied a simple majority vote
algorithm. We first computed the total number of labels available
for each triplet < S1, S2, ri > and then computed the number of
same labels for each triplet (votes). Since we had five algorithms
that provided recommendations, the maximum number of labels for
a particular < S1, S2, ri > was five. This happened when all five
algorithms came up with the exact same recommendation. We then
worked as follows: if the number of total labels was four or five and
the number of same labels was at least three, then we assigned this
majority label to the triplet. For example, if we had four labels in
total and three were objective relevant then we would assign the
label objective relevant to the triplet < S1, S2, ri >. Similarly, if there
were three labels in total and at least two labels were the same, then
we assigned this majority label to the triplet. To account for cases
where we had only one or two labels for a triplet < S1, S2, ri >,
we ran a second round of validation to ensure that all triplets were
labeled at least three times in order to have sufficient evidence for
the majority vote algorithm. The second round of labeling increased
the number of recommendations that were labeled to 11,522 for
outdoors, 12,507 for tools, and 11,209 for appliances (35,238 in
total). After the second round of evaluation, we applied again the
same majority vote algorithm, and discarded a triplet if there was no
agreement among the validators. This approach resulted in 98.4%
of the sessions having a majority label. Table 4 presents the overall
results of the study. For each dataset and model, we present the
following metrics:
• %triplets used: the number of triplets, < S1, S2, ri >, with a

majority agreement among validators over the total number of
triplets.

• #triplets: the number of triplets where there was agreement among
validators.

• Exact relevant: The ratio of exact relevant recommendations over
the total number of recommendations. For a triplet < S1, S2, ri >
a recommendation ri is considered as exact relevant if ri matches
exactly (i.e., same product identifier) one of the items in S2. This
metric is more strict than objective relevant as, in the latter, the
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Items currently in the cart Items that will be added to the cart next

Label

Item id 302217159 311297793 302217912 302217754 303830415

Product Title Outdoor Patio 
Chaise Lounge

Outdoor Patio 
Rocking Chair

Outdoor Patio 
Ottoman

Outdoor Accent 
Table

Outdoor Picnic Table with 
Separate Benches

311297091 
Outdoor Patio Swivel 

Lounge Chair

311297069 
Outdoor Patio 

Loveseat

311297930 
Outdoor Patio 

Chaise Lounge

302217900 
Outdoor Patio 
Rocking Chair

Recommendations

207194083
Outdoor 

Coffee Table

Figure 2: Validation example: for one session, two items are currently in the cart (S1) and three items will be added next (S2). The
validators provided labels for five recommendations (R). The first and second recommendations are assigned the ‘thumbs up’ label
(objective relevant) since they are very similar to items in S2. The third and fourth recommendations are assigned the ‘check’ label
(subjective relevant) since, although these recommended items are neither in S2 nor similar to any item in S2, they are still considered
relevant given the items in S1. Finally, the last recommendation is assigned the ‘thumbs down’ label (irrelevant) since it is not relevant
to items in S1 or S2.

recommended item does not necessarily have to match the product
identifier of the item in S2.

• Objective relevant: the ratio of the number of objective relevant
labels over the number of triplets used.

• Subjective relevant: the ratio of the number of subjective relevant
labels over the number of triplets used.

• Objective not exact relevant: the ratio of the number of objective
relevant labels for the case that the recommended product was very
similar but not identical to the product in S2 over the number of
triplets used. This metric captures how often a model recommends
items that are very similar but not identical to the item added to
cart. The values for this metric are crucial for the study, since they
will provide an insight into how often a model is penalized using
offline evaluation metrics despite making predictions very close
to the actual items that were added to cart.

• Overall relevant: the summation of the values for objective rel-
evant and subjective relevant that shows the percent of relevant
recommendations made by each model.
The exact relevant metric is computed offline since it does not

require input from validators. To compute the rest of the metrics, we
used only the triplets where validators agreed. For each metric, we
conduct a paired t-test between the two best performing models and
indicate with asterisks the cases that the difference is considered sta-
tistically significant (***p<.001, **p<.01, *p<.05). We now present
the main insights from our study and also compare the results of this
study (Table 4) with the results of the offline evaluation (Table 3).
Exact Relevant: V-SKNN reports very good performance in terms
of this metric, since this model ranked first for outdoors and tools
and second-best for appliances. Note though that this improve-
ment is considered statistically significant only for the case of tools.
GRU4REC ranks second-best for outdoors and tools. For this metric,
it is difficult to distinguish which models are best because the per-
formance improvements are marginal for two out of three datasets.
On a separate note, exact relevant can be considered very similar
to the precision metric reported in the evaluation using traditional
metrics in Table 3, however the ranking of the models is different

in this case. We believe that this happened because we worked on a
subset of the dataset used in Section 4 focusing on actions with five
items.
Objective relevant: GRU4REC is the model that ranked first for
this metric in all datasets and the difference is always considered
statistically significant. Taken together with the performance of
GRU4REC on the exact relevant metric (not ranked 1st) and the
objective not exact relevant metric (by far the winning model), we
conclude that GRU4REC is getting this boost in performance for
the objective relevant metric because it recommends products that,
although not identical to items added to cart, are still very similar.
It is not straightforward to determine which model ranks second
for this metric, since there is variation depending on the dataset.
Regardless, the important observation is that the ranking of the
models by the exact relevant metric is not in agreement with the
ranking of the models for the objective relevant metric. This is an
important finding, showing that the offline evaluation metrics are
not enough since they are too strict and penalize the models even
when they make predictions very similar to the ground truth. This
also suggests that researchers should not rely solely on the results
of offline evaluation to select the most appropriate model for their
system.
Objective not exact relevant: For all models, the percentage of
recommendations that are very similar but not identical to the items
added to cart is very high. We observe that the lowest increase in
absolute value is 6.3% while the highest increase is 22.7% which is
a huge boost for any model. The results around this metric indicate
that our motivation regarding the limitations of the offline evalu-
ation metrics has merit: these metrics indeed penalize the models
since they require exact match of the product identifiers. In terms of
comparison among models, GRU4REC ranks first for this metric,
always followed by STAMP. The difference is always statistically
significant. This suggests that both of these models are able to not
only recommend the exact products that the users added to cart, but
they can also recommend items very similar to these products. On
the other hand, baseline models such as V-SKNN and V-STAN are
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Dataset Model % triplets #triplets Exact Objective Subjective Objective Overall
used relevant relevant relevant not exact relevant

relevant
V-SKNN 98.2% 1,611 0.220 0.285 0.234 0.064 0.519
V-STAN 98.7% 1,622 0.209 0.277 0.191 0.065 0.468

Outdoors GRU4REC 98.0% 1,593 0.218 ***0.402 0.275 ***0.183 0.677
STAMP 98.9% 1,607 0.210 0.357 ***0.329 0.145 0.686
SR-GNN 98.9% 1,607 0.215 0.344 0.255 0.129 0.599
V-SKNN 96.3% 1,599 **0.245 0.396 0.211 0.155 0.607
V-STAN 98.1% 1,629 0.224 0.282 0.195 0.063 0.477

Tools GRU4REC 97.1% 1,610 0.228 *0.420 0.201 **0.197 0.621
STAMP 97.4% 1,612 0.226 0.390 **0.258 0.169 *0.648
SR-GNN 96.6% 1,603 0.215 0.313 0.213 0.102 0.526
V-SKNN 99.1% 1,571 0.284 0.388 0.121 0.113 0.509
V-STAN 98.9% 1,552 0.286 0.396 0.108 0.117 0.504

Appliances GRU4REC 99.2% 1,574 0.268 ***0.488 0.169 ***0.227 ***0.657
STAMP 98.9% 1,563 0.218 0.386 0.180 0.173 0.566
SR-GNN 98.6% 1,588 0.280 0.418 0.146 0.141 0.564

Table 4: Evaluation results using human experts on three datasets: outdoors, tools, and appliances. Exact relevant is computed by
comparing items in R with items in S2. All the other metrics are computed using the feedback from validators. The highest value
across all algorithms is shown in bold. The second-best value is underlined. Significance levels: *** p < .001, ** p < .01, * p < .05.

not able to perform well in this metric, suggesting that they cannot
learn deep interactions between the items and the sessions, instead
focusing on predicting the exact same item that a user added to cart.
Subjective relevant: STAMP outperforms the other models in all
datasets (difference is considered statistically significant for outdoors
and tools). GRU4REC ranks second for outdoors and appliances,
while SR-GNN ranks second for tools. This suggests that STAMP
can capture the user intent and recommend relevant items to the ones
in the cart.
Overall relevant: STAMP and GRU4REC are the two best-performing
models, but, at the same time it is not straightforward to identify the
clear winner: STAMP scored first for outdoors and tools and second
for appliances, while the reverse is true for GRU4REC.

6 A/B TEST
A/B testing is the most authoritative means to determine the exact
effectiveness of an algorithm for a business application [9] as it
can compute net business-impact. However, a bad A/B test design
choice could also impact customer experiences in real life and cause
tangible business damages. To mitigate this potential risk, we per-
formed the above two rounds of evaluation that allowed us to decide
which is the best candidate model for our application scenario. In
what follows, we explain our choice to use STAMP to test against
an existing third-party solution and the challenges that we had to
address to efficiently use such a model. Finally we present the results
of the A/B test.

6.1 Session-based Recommendations in
Production with STAMP

Based on the results of both offline evaluation and the evaluation
from human experts, we selected STAMP to participate in an A/B
test for the following reasons: (1) STAMP performed well in all
metrics reported in the offline evaluation (Table 3) with a very low
training time compared to other deep-learning models such as SR-
GNN. (2) STAMP reported the best overall relevant accuracy in the
evaluation using human experts in two out of three datasets (Table
4). Additionally, STAMP ranked first in terms of subjective-relevant
score in all datasets.

We measured STAMP against the control which is a leading third-
party software for retail recommendation. Since it is provided as a
black box solution we cannot describe its inner workings. Putting a
complex deep-learning model such as STAMP [19] into production is
a challenging task: STAMP requires computing the tri-linear product
of the session embedding, the last item embedding, and the embed-
ding of each product in the catalog for each event that involves any
change of items in the cart. Since the speed of serving recommenda-
tions for millions of items and for millions of customers in real-time
is critical for the success of a model, we leveraged Pinecone1, a com-
mercially available real-time ranking platform that can efficiently
handle both the deep learning model transformations and vector
search. Pinecone allows the lookup of product embeddings and com-
putation of the session embedding on the fly, as well as a speedy
tri-linear product computation against millions of products in the
catalog. STAMP was decomposed into a query transformer and an
item transformer both of which produced vectors whose dot product
was the recommendation score. Shopping items were indexed by
the platform by applying the item transformer offline and storing
the resulting vectors in replicated nearest-neighbor retrieval servers.
Query transformers were applied in real time to shopping carts as
well as other session information. The service then used the query
vector to retrieve highest scoring items. 99% of the customers expe-
rienced less than the 60ms latency when running the STAMP model
inference (i.e., p99 < 60ms).
6.2 Experiment Design and Results
The experiment was conducted on the shopping cart page. After a
customer added one or more items to the cart, and before checkout,
the model recommended five products that ranked in the first posi-
tions. The A/B test followed the common randomized experiment
protocol. The subjects of the experiment were customers who vis-
ited the shopping cart page of the site via a browser on a personal
computer in the United States. Customers were split between the
control and the treatment uniformly at random (50:50 split on the
full traffic). Each customer consistently received either the treatment
or the control. The metrics used in the A/B test were conversion rate
and revenue per visit. Conversion rate is defined as the probability
that a customer who is shown a recommendation, clicks on one of

1www.pinecone.io

www.pinecone.io
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the items, and eventually purchases it. Revenue per visit is akin to
conversion rate but weighed according to product prices. It is defined
as the total cart prices of all carts which contained recommended
(and clicked) items divided by the number of website visits. The
division only serves as a normalization term for the population size.
The experiment showed the overall conversion rate of the treatment
(STAMP) was 15.6% higher that that of the control (third-party).
Finally, when measuring the revenue per visit we observed a 18.5%
increase from the control to the treatment. Both differences are
considered statistically significant with p-value < .001.

7 CONCLUSIONS, LIMITATIONS, AND
FUTURE WORK

In this work, we studied the performance of a set of models for
session-based recommendations in the home improvement domain
with the goal of finding the best model to put into production in a
real e-commerce application, i.e., THD. To this end, we conducted
three different evaluation procedures. First we performed an offline
evaluation where we compared the performance of fourteen baseline
and deep learning models using traditional metrics. We confirmed
recent findings that baseline models are very strong in terms of
precision and recall metrics. Next, we selected five algorithms that
performed the best and ran a second round of evaluation using human
experts. We found that SR-GNN that scored the best in metrics such
as HR, MRR, NDCG scored third in the evaluation using human
experts while V-STAN that ranked first in terms of precision, recall,
and MAP, ranked last in this round. Out of the five models, the
ones that ranked in the first three positions were all deep learning
models (STAMP, GRU4REC, SR-GNN), suggesting that this family
of models is more suitable for our application scenario. In the third
round of evaluation, we ran an A/B test with real users where we
compared STAMP with a third-party solution showing that STAMP
statistically significantly improves conversion rate and revenue per
visit.

In the future, we plan to build upon our work and further im-
prove our findings as follows: (1) Although GRU4REC and STAMP
performed best, for business reasons, we needed to avoid the risk
of putting two new methods in front of real users. As a result, we
compared one of the best two models (STAMP) with the third-party
solution that, again for business reasons, we could not disclose the
details of its inner workings. However, we stress that the incumbent
solution is the result of significant engineering and science efforts
by a large commercial entity. In our future work, and, based on our
finding that STAMP is better compared to the third-party solution,
we plan to conduct another round of A/B test between STAMP and
GRU4REC. (2) The session-based recommendation models in this
paper do not leverage the item content and, as a result, we cannot
recommend items that do not appear in the training data. To over-
come this limitation, we plan to leverage the attributes of the items
(e.g., product title, description). (3) During the two evaluations, we
found that different models reported better in different metrics. In
the future, we plan to experiment with ensembling different models
to get a combined benefit and overcome the limitations of single
models. (4) Finally, we also plan to integrate the validators’ feedback
in the training data and establish a continuous human-in-the loop AI
process.
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