
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Relative Error StreamingQuantiles
Graham Cormode

University of Warwick

Coventry, UK

G.Cormode@warwick.ac.uk

Zohar Karnin

Amazon

USA

zkarnin@gmail.com

Edo Liberty

HyperCube

USA

edo@edoliberty.com

Justin Thaler

Georgetown University

Washington, D.C., USA

justin.thaler@georgetown.edu

Pavel Veselý

University of Warwick

Coventry, UK

Pavel.Vesely@warwick.ac.uk

ABSTRACT
Approximating ranks, quantiles, and distributions over streaming

data is a central task in data analysis andmonitoring. Given a stream

of n items from a data universe U equipped with a total order, the

task is to compute a sketch (data structure) of size poly(log(n), 1/ε).
Given the sketch and a query item y ∈ U, one should be able

to approximate its rank in the stream, i.e., the number of stream

elements smaller than or equal to y.
Most works to date focused on additive εn error approximation,

culminating in the KLL sketch that achieved optimal asymptotic

behavior. This paper investigates multiplicative (1 ± ε)-error ap-
proximations to the rank. Practical motivation for multiplicative

error stems from demands to understand the tails of distributions,

and hence for sketches to be more accurate near extreme values.

The most space-efficient algorithms due to prior work store ei-

ther O(log(ε2n)/ε2) or O(log
3(εn)/ε) universe items. This paper

presents a randomized algorithm storing O(log
1.5(εn)/ε) items,

which is within an O(
√

log(εn)) factor of optimal. The algorithm

does not require prior knowledge of the stream length and is fully

mergeable, rendering it suitable for parallel and distributed com-

puting environments.
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1 INTRODUCTION
Understanding the distribution of data is a fundamental task in data

monitoring and analysis. The problem of streaming quantile approx-

imation captures this task in the context of massive or distributed

datasets.

The problem is as follows. Let σ = {x1, . . . ,xn } be a stream of

items, all drawn from a data universeU equipped with a total order.
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For any y ∈ U, let R(y;σ ) = |{xi | xi ≤ y}| be the rank of y in the

stream. When σ is clear from context, we write R(y). The objective
is to process the stream while storing a small number of items, and

then use those to approximate R(y) for any y ∈ U. A guarantee

for an approximation R̂(y) is additive if |R̂(y) − R(y)| ≤ εn, and
multiplicative or relative if |R̂(y) − R(y)| ≤ ε R(y).

A long line of work has focused on achieving additive error

guarantees [2, 3, 8, 9, 12, 14, 18, 19]. However, additive error is

not appropriate for many applications. Indeed, often the primary

purpose of computing quantiles is to understand the tails of the

data distribution. When R(y) ≪ n, a multiplicative guarantee is

much more accurate and thus harder to obtain. As pointed out by

Cormode et al. [4], a solution to this problem would also yield high

accuracy when n − R(y) ≪ n, by running the same algorithm with

the reversed total ordering (simply negating the comparator).

A quintessential application that demands relative error is moni-

toring network latencies. In practice, one often tracks response time

percentiles 50, 90, 99, and 99.9. This is because latencies are heavily

long-tailed. For example, Masson et al. [16] report that for web

response times, the 98.5th percentile can be as small as 2 seconds

while the 99.5th percentile can be as large as 20 seconds. These

unusually long response times affect network dynamics [4] and are

problematic for users. Hence, highly accurate rank approximations

are required for items y whose rank is very large (n − R(y) ≪ n);
this is precisely the requirement captured by the multiplicative

error guarantee.

Achieving multiplicative guarantees is known to be strictly
harder than additive ones. There are comparison-based additive

error algorithms that store just Θ(ε−1) items for constant failure

probability [12], which is optimal. In particular, to achieve addi-

tive error, the number of items stored may be independent of the

stream length n. In contrast, any algorithm achieving multiplicative

error must store Ω(ε−1 · log(εn)) items (see [4, Theorem 2] and

Appendix A).
1

The best known algorithms achieving multiplicative error guar-

antees are as follows. Zhang et al. [23] give a randomized algorithm

storing O(ε−2 · log(ε2n)) universe items. This is essentially a ε−1

factor away from the aforementioned lower bound. There is also an

1
Intuitively, the reason additive-error sketches can achieve space independent of the

stream length is because they can take a subsample of the stream of size about Θ(ε−2)

and then sketch the subsample. For any fixed item, the additive error to its rank

introduced by sampling is at most εn with high probability. When multiplicative error

is required, one cannot subsample the input: for low-ranked items, the multiplicative

error introduced by sampling will, with high probability, not be bounded by any

constant.

1
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algorithm of Cormode et al. [5] that storesO(ε−1 · log(εn) · log |U|)

items. However, this algorithm requires prior knowledge of the

data universe U (since it builds a binary tree over U), and is inap-

plicable whenU is huge or even unbounded (e.g., if the data can

take arbitrary real values). Finally, Zhang and Wang [22] designed

a deterministic algorithm requiring O(ε−1 · log
3(εn)) space. Very

recent work of Cormode and Veselý [6] proves an Ω(ε−1 · log
2(εn))

lower bound for deterministic comparison-based algorithms, which

is within a log(εn) factor of Zhang and Wang’s upper bound.

Despite both the practical and theoretical importance of multi-

plicative error (which is arguably an even more natural goal than

additive error), there has been no progress on upper bounds, i.e.,

no new algorithms, since 2007.

In this work, we give a randomized algorithm that maintains the

optimal linear dependence on 1/ε achieved by Zhang and Wang,

with a significantly improved dependence on the stream length.

Namely, we design a comparison-based, one-pass streaming algo-

rithm that given ε > 0 and δ > 0, computes a sketch consisting of

O
(
ε−1 · log

1.5(εn) ·
√

log (1/δ )
)
universe items, and from which an

estimate R̂(y) of R(y) can be derived for every y ∈ U. For any fixed

y ∈ U, with probability at least 1−δ , the returned estimate satisfies

the multiplicative error guarantee |R̂(y) − R(y)| ≤ ε R(y). Ours is
the first algorithm to be strictly more space efficient than any deter-

ministic comparison-based algorithm (owing to the Ω(ε−1
log

2(εn))

lower bound in [6]) and is within an Õ(
√

log(εn)) factor of the
known lower bound for randomized algorithms achieving multi-

plicative error. (In this manuscript, the Õ notation hides factors

polynomial in log(1/δ ), log logn, and log(1/ε).)
We also show that the algorithm processes the input

stream efficiently. Namely, the amortized update time of

the algorithm is a logarithm of the space bound, that is,

O
(
log(ε−1) + log log(n) + log log(1/δ )

)
; see Section 4 for details.

Mergeability. The ability to merge sketches of different streams

to get an accurate sketch for the concatenation of the streams is

highly significant both in theory [1] and in practice [20]. Such

mergeable summaries enable trivial, automatic parallelization and

distribution of processing massive data sets, by arbitrarily splitting

the data up into pieces, summarizing each piece separately, and

then merging the results.

We show that our sketch is fully mergeable. This means that, if a

data set is split into pieces and each piece is summarized separately,

and the resulting summaries are combined via an arbitrary sequence

ofmerge operations, the algorithmmaintains the same relative error

guarantees while using essentially the same space as if the entire

data set had been processed as a single stream (see Appendix C for

details).

The following theorem is the main result of this paper. We stress

that our algorithm does not require any advance knowledge about

n, the total size of input, which indeed may not be available in many

applications.
2

2
A proof-of-concept Python implementation of our algorithm is available at GitHub:

https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.

py. A production-quality implementation in the Apache DataSketches library is in

preparation and will be available at https://datasketches.apache.org/.

Theorem 1. Let 0 < δ ≤ 0.5 and 0 < ε ≤ 1 be parameters
satisfying ε ≤ 4/ 4

√
2 log

2
(n). There is a randomized, comparison-

based, one-pass streaming algorithm that, when processing a data
stream consisting of n items, produces a summary S satisfying the
following property. Given S , for anyy ∈ U one can derive an estimate
R̂(y) of R(y) such that

Pr

[
|R̂(y) − R(y)| ≥ ε R(y)

]
< δ ,

where the probability is over the internal randomness of the streaming

algorithm. If ε ≤ 4 ·

√
ln

1

δ /log
2
(εn), then the size of S is

O
©«ε−1 · log

1.5(εn) ·

√
log

(
1

δ

)ª®¬ ;

otherwise, storing S takes O
(
log

2(εn)
)
memory words. Moreover, the

summary produced is fully mergeable.

Note that the assumption ε ≤ 4/ 4

√
2 log

2
(n) is very weak as for

anyn ≤ 2
128

, it holds that
4

√
2 log

2
(n) ≤ 4, rendering the assumption

vacuous in practical scenarios. Similarly, the space bound that holds

in the case ε ≤ 4 ·

√
ln

1

δ /log
2
(εn) certainly applies for values of ε

and n encountered in practice (e.g., for n ≤ 2
64

and δ ≤ 1/e , this
latter requirement is implied by ε ≤ 1/2).

All-quantiles approximation. As a straightforward corollary of

Theorem 1, we obtain a space-efficient algorithm whose estimates

are simultaneously accurate for all y ∈ U with high probability.

The proof is a standard use of the union bound combined with an

epsilon-net argument; we include the proof in Appendix B.

Corollary 1 (All-Quantiles Approximation). The error
bound from Theorem 1 can be made to hold for all y ∈ U simul-
taneously with probability 1 − δ while storing

O
©«ε−1 · log

1.5(εn) ·

√
log

(
log(εn)

εδ

)ª®¬
stream items if ε ≤ O

(√
log

1

εδ /log(εn)

)
and O

(
log

2(εn)
)
items

otherwise.

Challenges and techniques. A starting point of the design of our

algorithm is the KLL sketch [12] that achieves optimal accuracy-

space trade-off for the additive error guarantee. The basic building

block of the algorithm is a buffer, called a compactor, that receives
an input stream of n items and outputs a stream of at most n/2

items, meant to “approximate” the input stream. The buffer simply

stores items and once it is full, we sort the buffer, output all items

stored at either odd or even indexes (with odd vs. even selected via

an unbiased coin flip), and clear the contents of the buffer—this is

called the compaction operation. Note that a randomly chosen half

of items in the buffer is simply discarded, whereas the other half of

items in the buffer is “output” by the compaction operation.

The overall KLL sketch is built as a sequence of at most log
2
(n)

such compactors, such that the output stream of a compactor is

treated as the input stream of the next compactor. We thus think

of the compactors as arranged into levels, with the first one at

2

https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py
https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py
https://datasketches.apache.org/
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level 0. Similar compactors were already used, e.g., in [1, 13–15],

and additional ideas are needed to get the optimal space bound for

additive error, of O(1/ε) items stored across all compactors [12].

The compactor building block is not directly applicable to our

setting for the following reasons. A first observation is that to

achieve the relative error guarantee, we need to always store the

1/ϵ smallest items. This is because the relative error guarantee

demands that estimated ranks for the 1/ε lowest-ranked items in

the data stream are exact. If even a single one of these items is

deleted from the summary, then these estimates will not be exact.

Similarly, among the next 2/ϵ smallest items, the summary must

store essentially every other item to achieve multiplicative error.

Among the next 4/ϵ smallest items in the order, the sketch must

store roughly every fourth item, and so on.

The following simple modification of the compactor from the

KLL sketch indeed achieves the above. Each buffer of size B “pro-

tects” the B/2 smallest items stored inside, meaning that these items

are not involved in any compaction (i.e., the compaction operation

only removes the B/2 largest items from the buffer). Unfortunately,

it turns out that this simple approach requires spaceΘ(ε−2·log(ε2n)),
which merely matches the space bound achieved in [23], and in

particular has a (quadratically) suboptimal dependence on 1/ε .
The key technical contribution of our work is to enhance this

simple approach with a more sophisticated rule for selecting the

number of protected items in each compaction. One solution that

yields our upper bound is to choose this number in each compaction

at random from an appropriate exponential distribution. However,

to get a cleaner analysis and a better dependency on the failure

probability δ , we in fact derandomize this distribution.

While the resulting algorithm is relatively simple, analyzing the

error behavior brings new challenges that do not arise in the addi-

tive error setting. Roughly speaking, when analyzing the accuracy

of the estimate for R(y) for any fixed item y, all error can be “attrib-

uted” to compaction operations. In the additive error setting, one

may suppose that every compaction operation contributes to the

error and still obtain a tight error analysis [12]. Unfortunately, this

is not at all the case for relative error: as already indicated, to obtain

our accuracy bounds it is essential to show that the estimate for any

low-ranked item y is affected by very few compaction operations.

Thus, the first step of our analysis is to carefully bound the num-

ber of compactions on each level that affect the error for y, using
a charging argument that relies on the derandomized exponential

distribution to choose the number of protected items. To get a suit-

able bound on the variance of the error, we also need to show that

the rank of y in the input stream to each compactor falls by about

a factor of two at every level of the sketch. While this is intuitively

true (since each compaction operation outputs a randomly chosen

half of “unprotected” items stored in the compactor), it only holds

with high probability and hence requires a careful treatment in the

analysis. Finally, we observe that the error in the estimate for y is a

zero-mean sub-Gaussian variable with variance bounded as above,

and thus applying a standard Chernoff tail bound yields our final

accuracy guarantees for the estimated rank of y.
There are substantial additional technical difficulties to analyze

the algorithm under an arbitrary sequence of merge operations,

especially with no foreknowledge of the total size of the input.

Most notably, when the input size is not known in advance, the

parameters of the sketch must change as more inputs are processed.

This makes obtaining a tight bound on the variance of the resulting

estimates highly involved. In particular, as a sketch processes more

and more inputs, it protects more and more items, which means that

items appearing early in the stream may not be protected by the

sketch, even though theywould have been protected if they appeared
later in the stream. Addressing this issue is reasonably simple in the

streaming setting, because every time the sketch parameters need

to change, one can afford to allocate an entirely new sketch with the

updated parameters, without discarding the previous sketch(es); see

Section 5 for details. Unfortunately, this simple approach does not

work for a general sequence of merge operations, and we provide a

much more intricate analysis to give a fully mergeable summary.

A second challenge when designing and analyzing merge op-

erations arises from working with our derandomized exponential

distribution, since this requires each compactor to maintain a “state”

variable determining the current number of protected items, and

these variables need to be “merged” appropriately. It turns out that

the correct way to merge state variables is to take a bit-wise OR of

their binary representations. With this technique for merging state

variables in hand, we extend the charging argument bounding the

number of compactions affecting the error in any given estimate

so as to handle an arbitrary sequence of merge operations.

Analysis with extremely small probability of failure. We close

by giving an alternative analysis of our algorithm that achieves

a space bound with an exponentially better (double logarithmic)

dependence on 1/δ , compared to Theorem 1. However, this im-

proved dependence on 1/δ comes at the expense of the exponent

of log(εn) increasing from 1.5 to 2. Formally, we prove the follow-

ing theorem in Appendix D, where we also show that it directly

implies a deterministic space bound of O(ε−1 · log
3(εn)), matching

the state-of-the-art result in [22]. For simplicity, we only prove the

theorem in the streaming setting, although we conjecture that an

appropriately modified proof of Theorem 1 would yield the same

result even when the sketch is built using merge operations.

Theorem 2. For any parameters 0 < δ ≤ 0.5 and 0 < ε ≤ 1, there
is a randomized, comparison-based, one-pass streaming algorithm

that computes a sketch consisting ofO
(
ε−1 · log

2(εn) · log log(1/δ )
)

universe items, and fromwhich an estimate R̂(y) ofR(y) can be derived
for every y ∈ U. For any fixed y ∈ U, with probability at least
1−δ , the returned estimate satisfies the multiplicative error guarantee
|R̂(y) − R(y)| ≤ ε R(y).

We remark that this alternative analysis builds on an idea

from [12] to analyze the top few levels of compactors deterministi-

cally rather than obtaining probabilistic guarantees on the errors

introduced to estimates by these levels.

Organization of the paper. Since the proof of full mergeability

in Theorem 1 is quite involved, we proceed in several steps of

increasing complexity. We describe our sketch in the streaming

setting in Section 2, where we also give a detailed but informal

outline of the analysis. We then formally analyze the sketch in

the streaming setting in Sections 3 and 4, also assuming that a

polynomial upper bound on the stream length is known in advance.

The space usage of the algorithm grows polynomially with the

3
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logarithm of this upper bound, so if this upper bound is at most

nc for some constant c ≥ 1, then the space usage of the algorithm

remains as stated in Theorem 1, with only the hidden constant

factor changing. Then, in Section 5, we explain how to remove this

assumption in the streaming setting, yielding an algorithm that

works without any information about the final stream length.

Finally, we fully describe the merge procedure and analyze the

accuracy of our sketch under an arbitrary sequence of merge oper-

ations in Appendix C (for didactic purposes, we outline a simplified

merge operation in Section 2.3). As mentioned above, Appendix D

contains an alternative analysis that yields better space bounds for

extremely small failure probabilities δ .

1.1 Detailed Comparison to Prior Work
Some prior works on streaming quantiles consider queries to be

ranks r ∈ {1, . . . ,n}, and the algorithmmust identify an itemy ∈ U

such that R(y) is close to r . In this work we focus on the dual prob-

lem, where we consider queries to be universe items y ∈ U and the

algorithm must yield an accurate estimate for R(y). Unless specified
otherwise, algorithms described in this section directly solve both

formulations (this holds for our algorithm as well). Algorithms are

randomized unless stated otherwise. For simplicity, randomized

algorithms are assumed to have constant failure probability δ . All
reported space costs refer to the number of universe items stored.

3

Additive Error. Manku, Rajagopalan, and Lindsay [14, 15] built

on the work of Munro and Paterson [17] and gave a deterministic

solution that stores at most O(ε−1 · log
2(εn)) items, assuming prior

knowledge of n. Greenwald and Khanna [10] created an intricate

deterministic streaming algorithm that storesO(ε−1 · log(εn)) items.

This is the best known deterministic algorithm for this problem,

with a matching lower bound for comparison-based streaming al-

gorithms [6]. Agarwal, Cormode, Huang, Phillips, Wei, and Yi [1]

provided a mergeable sketch of sizeO(ε−1 · log
1.5(1/ε)). This paper

contains many ideas and observations that were used in later work.

Felber andOstrovsky [8] managed to reduce the space complexity to

O(ε−1 · log(1/ε)) items by combining sampling with the Greenwald-

Khanna sketches in non-trivial ways. Finally, Karnin, Lang, and

Liberty [12] resolved the problem by providing an O(1/ε)-space
solution, which is optimal. For general (non-constant) failure prob-

abilities δ , the space upper bound becomes O(ε−1 · log log(1/δ )),
and they also prove a matching lower bound for comparison-based

randomized algorithms, assuming δ is exponentially small in n.

Multiplicative Error. A large number of works sought to pro-

vide more accurate quantile estimates for low or high ranks. Only

a handful offer solutions to the relative error quantiles problem

(also sometimes called the biased quantiles problem) considered

in this work. Gupta and Zane [11] gave an algorithm for relative

error quantiles that stores O(ε−3 · log
2(εn)) items, and use this

to approximately count the number of inversions in a list; their

algorithm requires prior knowledge of the stream length n. As pre-
viously mentioned, Zhang et al. [23] presented an algorithm storing

3
Apart from storing universe items, the algorithms may store, for example, bounds on

ranks of stored items or some counters, but the number of such variables is proportional

to the number of items stored or even smaller. Thus, the space bounds are in memory

words, which can store any item or an integer with O (log(n + |U |)) bits.

O(ε−2 · log(ε2n)) universe items. Cormode et al. [5] designed a de-

terministic sketch storing O(ε−1 · log(εn) · log |U|) items, which

requires prior knowledge of the data universe U. Their algorithm

is inspired by the work of Shrivastava et al. [21] in the additive

error setting and it is also mergeable (see [1, Section 3]). Zhang

and Wang [22] gave a deterministic merge-and-prune algorithm

storing O(ε−1 · log
3(εn)) items, which can handle arbitrary merges

with an upper bound on n, and streaming updates for unknown n.
However, it does not tackle the most general case of merging with-

out a prior bound on n. Cormode and Veselý [6] recently showed a

space lower bound of Ω(ε−1 · log
2(εn)) items for any deterministic

comparison-based algorithm.

Other related works that do not fully solve the relative er-

ror quantiles problem are as follows. Manku, Rajagopalan, and

Lindsay [15] designed an algorithm that, for a specified number

ϕ ∈ [0, 1], stores O(ε−1 · log(1/δ )) items and can return an item y
with R(y)/n ∈ [(1 − ε)ϕ, (1 + ε)ϕ] (their algorithm requires prior

knowledge of n). Cormode et al. [4] gave a deterministic algorithm

that is meant to achieve error properties “in between” additive and

relative error guarantees. That is, their algorithm aims to provide

multiplicative guarantees only up to some minimum rank k ; for
items of rank below k , their solution only provides additive guar-

antees. Their algorithm does not solve the relative error quantiles

problem: [23] observed that for adversarial item ordering, the algo-

rithm of [4] requires linear space to achieve relative error for all

ranks. Dunning and Ertl [7] describe a heuristic algorithm called

t-digest that is intended to achieve relative error, but they provide

no formal accuracy analysis.

Most recently, Masson, Rim, and Lee [16] introduced a new

notion of error for quantile sketches (they also refer to their notion

as “relative error”, but it is quite distinct from the notion considered

in this work). They require that for a query percentile ϕ ∈ [0, 1],

if y denotes the item in the data stream satisfying R(y) = ϕn, then
the algorithm should return an item ŷ ∈ U such that |y − ŷ | ≤
ε · |y |. This definition only makes sense for data universes with a

notion of magnitude and distance (e.g., numerical data), and the

definition is not invariant to natural data transformations, such

as incrementing every data item y by a large constant. It is also

trivially achieved by maintaining a (mergeable) histogram with

buckets ((1 + ϵ)i , (1 + ϵ)i+1]. In contrast, the standard notion of

relative error considered in this work does not refer to the data

items themselves, only to their ranks, and is arguably of more

general applicability.

2 DESCRIPTION OF THE ALGORITHM
2.1 The Relative-Compactor Object
The crux of our algorithm is a building block that we call the relative-

compactor. Roughly speaking, this object processes a stream of n
items and outputs a stream of at mostn/2 items (each “up-weighted”

by a factor of 2), meant to “approximate” the input stream. It does

so by maintaining a buffer of limited capacity.

Our complete sketch, described in Section 2.2 below, is composed

of a sequence of relative-compactors, where the input of the h+1’th

relative-compactor is the output of the h’th. With at most log
2
(εn)

such relative-compactors, n being the length of the input stream,

4
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Figure 1: Illustration of the execution of a relative-
compactor when inserting a new item xt into a buffer that
is full at time t . See Lines 5-14 of Algorithm 1.

the output of the last relative-compactor is of sizeO(1/ε), and hence
can be stored in memory.

Compaction Operations. The basic subroutine used by our

relative-compactor is a compaction operation. The input to a com-

paction operation is a list X of 2m items x1 ≤ x2 ≤ . . . ≤ x2m , and

the output is a sequence Z ofm items. This output is chosen to be

one of the following two sequences, uniformly at random: Either

Z = {x2i−1}
m
i=1

or Z = {x2i }
m
i=1

. That is, the output sequence Z
equals either the even or odd indexed items in the sorted order,

with both outcomes equally probable.

Consider an item y ∈ U and recall that R(y;X ) = |{x ∈ X |x ≤

y}| is the number of items x ∈ X satisfying x ≤ y. The following is

a trivial observation regarding the error of the rank estimate of y
with respect to the input X of a compaction operation when using

Z . We view the output Z of a compaction operation (with all items

up-weighted by a factor of 2) as an approximation to the input

X ; for any y, its weighted rank in Z should be close to its rank in

X . Observation 3 below states that this approximation incurs zero
error on items that have an even rank in X . Moreover, for items y
that have an odd rank in X , the error for y ∈ U introduced by the

compaction operation is +1 or −1 with equal probability.

Observation 3. A universe item y ∈ U is said to be even (odd)
w.r.t a compaction operation if R(y;X ) is even (odd), where X is the
input sequence to the operation. If y is even w.r.t the compaction, then
R(y;X ) − 2 R(y;Z ) = 0. Otherwise R(y;X ) − 2 R(y;Z ) is a variable
taking a value from {−1, 1} uniformly at random.

The observation that items of even rank (and in particular items

of rank zero) suffer no error from a compaction operation plays an

especially important role in the error analysis of our full sketch.

Full Description of the Relative-Compactor Object. The complete

description of the relative-compactor object is given in Algorithm 1.

The high-level idea is as follows. The relative-compactor maintains

a buffer of size B = 2 · k · ⌈log
2
(n/k)⌉ where k is an even integer

parameter controlling the error and n is the upper bound on the

stream length. (For now, we assume that such an upper bound is

available; we remove this assumption in Section 5.) The incoming

items are stored in the buffer until it is full. At this point, we perform

a compaction operation, as described above.

The input to the compaction operation is not all items in the

buffer, but rather the largestL items in the buffer for a parameterL ≤

B/2 such that L is even. These L largest items are then removed from

the buffer, and the output of the compaction operation is sent to the

output stream of the buffer. This intuitively lets low-ranked items

stay in the buffer longer than high-ranked ones. Indeed, by design

the lowest-ranked half of items in the buffer are never removed. We

show later that this facilitates the multiplicative error guarantee.

The crucial part in the design of Algorithm 1 is to select the

parameter L in a right way, as L controls the number of items

compacted each time the buffer is full. If we were to set L = B/2 for

all compaction operations, then analyzing the worst-case behavior

reveals that we need k ≈ 1/ε2
, resulting in a sketch with a quadratic

dependency on 1/ε . To achieve the linear dependency on 1/ε , we
choose the parameter L via a derandomized exponential distribution
subject to the constraint that L ≤ B/2.

4

Algorithm 1 Relative-Compactor

Input: Parameters k ∈ 2N+ and n ∈ N+, and a stream of items

x1,x2, . . . of length at most n
1: Set B = 2 · k · ⌈log

2
(n/k)⌉

2: Initialize an empty buffer B of size B, indexed from 1

3: Set C = 0 ▷ State of the compaction schedule

4: for t = 1 . . . do
5: if B is full then ▷ Compaction operation

6: Compute z(C) = the number of trailing ones in the

binary representation of C
7: Set LC = (z(C) + 1) · k and SC = B − LC + 1

8: Pivot B s.t. the largest LC items occupy B[SC : B]
9: ▷ B[SC : B] are the last LC slots of B

10: Sort B[SC : B] in non-descending order

11: Output either even or odd indexed items in the range

B[SC : B] with equal probability

12: Mark slots B[SC : B] in the buffer as clear

13: Increase C by 1

14: Store xt to the next available slot in the buffer B.

In more detail, one can think of Algorithm 1 as choosing L as

follows. During each compaction operation, the second half of the

buffer (with B/2 largest items) is split into ⌈log
2
(n/k)⌉ sections,

each of size k and numbered from the right so that the first section

contains the k largest items, the second one next k largest items,

and so on; see Figure 2. The idea is that the first section is involved

in every compaction (i.e., we always have L ≥ k), the second section
in every other compaction (i.e., L ≥ 2k every other time), the third

section in every fourth compaction, and so on. This can be described

concisely as follows: LetC be the number of compactions performed

so far. During the next (i.e., theC + 1-st) compaction of the relative-

compactor, we set LC = (z(C) + 1) · k , where z(C) is the number of

4
A prior version of this manuscript used an actual exponential distribution; see https:

//arxiv.org/abs/2004.01668v1. The algorithm presented here uses randomness only to

select which items to place in the output stream, not how many items to compact. This

leads to a cleaner analysis and isolates the one component of the algorithm for which

randomness is essential.
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Figure 2: Illustration of a relative-compactor and its sections, together with the indexes of the sections.

trailing ones in the binary representation of C . We call the variable

C the state of this “compaction schedule” (i.e., a particular way of

choosing L). See Lines 6-7 of Algorithm 1, where we also define

SC = B − LC + 1 as the first index in the compacted part of the

buffer.

Observe that LC ≤ B/2 always holds in Algorithm 1. Indeed,

there are at most n/k compaction operations (as each discards at

least k items), so the binary representation of C never has more

than ⌈log
2
(n/k)⌉ bits, not even after the last compaction. Thus, z(C),

the number of trailing ones in the binary representation of C , is
always less than ⌈log

2
(n/k)⌉ and hence, LC ≤ ⌈log

2
(n/k)⌉ · k =

B/2. It also follows that there is at most one compaction operation

that compacts all ⌈log
2
(n/k)⌉ sections at once. Our deterministic

compaction schedule has the following crucial property:

Fact 4. Between any two compaction operations that involve ex-
actly j sections (i.e., both have L = j ·k), there is at least one compaction
operation that involves more than j sections.

Proof. LetC < C ′
denote the states of the compaction schedule

in two steps t < t ′ with a compaction operation involving exactly j
sections. Then we can express the binary representations of C and

C ′
as (x, 0, 1j−1) and (x′, 0, 1j−1), respectively, where 1j−1

denotes

the all-1s vector of length j − 1, and x and x′ are respectively

the binary representations of two numbers y and z with y < z.
Consider the binary vector (x, 1j ). This is the binary representation
of a number Ĉ ∈ (C,C ′) with strictly more trailing ones than the

binary representations ofC andC ′
. The claim follows as there must

be a step t̂ ∈ (t , t ′) when the state equals Ĉ and a compaction

operation is performed. □

2.2 The Full Sketch
Following prior work [1, 12, 14], the full sketch uses a sequence

of relative-compactors. At the very start of the stream, it consists

of a single relative-compactor (at level 0) and opens a new one

(at level 1) once items are fed to the output stream of the first

relative-compactor (i.e., after the first compaction operation, which

occurs on the first stream update during which the buffer is full).

In general, when the newest relative-compactor is at level h, the
first time the buffer at level h performs a compaction operation

(feeding items into its output stream for the first time), we open

a new relative-compactor at level h + 1 and feed it these items.

Algorithm 2 describes the logic of this sketch. To answer rank

queries, we use the items in the buffers of the relative-compactors

as a weighted coreset. That is, the union of these items is a weighted

set C of items, where the weight of items in relative-compactor at

level h is 2
h
(h starts from 0), and the approximate rank of y is the

sum of weights of items in C smaller than or equal to y.
The construction of layered exponentially-weighted compactors

and the subsequent rank estimation is virtually identical to that

explained in prior works [1, 12, 14]. Our essential departure from

prior work is in the definition of the compaction operation, not in

how compactors are plumbed together to form a complete sketch.

Algorithm 2 Relative-Error Quantiles sketch

Input: Parameters k ∈ 2N+ and n ∈ N+, and a stream of items

x1,x2, . . . of length at most n
Output: A sketch answering rank queries

1: Let RelCompactors be a list of relative-compactors

2: Set H = 0, initialize relative-compactor at RelCompactors[0],

with parameters k and n
3: for t = 1 . . . do
4: Insert(xt , 0)

5: function Insert(x ,h)
6: if H < h then
7: Set H = h
8: Initialize relative-compactor at RelCompactors[h], with

parameters k and n

9: Insert item x into RelCompactors[h]
10: for z in output stream of RelCompactors[h] do
11: Insert(z,h + 1)

12: function Estimate-Rank(y)
13: Set R̂(y) = 0

14: for h = 0 to H do
15: for each item y′ ≤ y stored in RelCompactors[h] do
16: Increment R̂(y) by 2

h

return R̂(y)

2.3 Merge Operation
We describe a merge operation that takes as input two sketches

S ′ and S ′′ which have processed two separate streams σ ′
and σ ′′

,

and that outputs a sketch S that summarizes the concatenated

stream σ = σ ′ ◦ σ ′′
(the order of σ ′

and σ ′′
does not matter here).

For simplicity, we assume w.l.o.g. that sketch S ′ has at least as
many levels as sketch S ′′. Then, the resulting sketch S inherits

parameters k and n from sketch S ′. We further assume that both S ′

and S ′′ have the same value of k and that n is still an upper bound

on the combined input size. Later, in Appendix C, we show how

to remove the latter assumption and provide a tight analysis of

the sketch created by an arbitrary sequence of merge operations

without any advance knowledge about the total input size, thus

proving Theorem 1.

The basic idea of the merge operation is straightforward: At

each level, concatenate the buffers and if that causes the capacity

of the compactor to be exceeded, perform the compaction oper-

ation, as in Algorithm 1. However, there is crucial subtlety: We

need to combine the states C of the compaction schedule at each

level in a manner that ensures that relative-error guarantees are

satisfied for the merged sketch. Consider a level h and let C ′
and
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C ′′
be the states of the compaction schedule at level h in S ′ and

S ′′, respectively. The new state C at level h will be the bitwise OR

of C ′
and C ′′

. We explain the intuition behind using the bitwise

OR in Appendix C, where we also prove an extension of Fact 4 for

mergeability. Note that while in the streaming setting, the state

corresponds to the number of compaction operations already per-

formed, after a merge operation this may not hold anymore. Still,

if the state is zero, this indicates that the buffer has not yet been

subject to any compactions. Algorithm 3 provides a pseudocode of

the merge operation, where we use S .H for the index of the highest

level of sketch S and similarly, S .k and S .n for the parameters k and

n of S , respectively.

Algorithm 3Merge operation

Input: Sketches S ′ and S ′′ to be merged such that S ′.H ≥ S ′′.H
Output: A sketch answering rank queries for the combined inputs

of S ′ and S ′′

1: for h = 0, . . . , S ′′.H do ▷ Merge S ′′ into S ′

2: S ′.RelCompactors[h].C = S ′.RelCompactors[h].C OR
S ′′.RelCompactors[h].C

3: Insert all items in S ′′.RelCompactors[h] into

S ′.RelCompactors[h]

4: for h = 0, . . . , S ′.H do
5: if buffer S ′.RelCompactors[h] exceeds its capacity then
6: Perform compaction operation as in lines 6-13 of Algo-

rithm 1 and insert output items into S ′.RelCompactors[h + 1]

7: return S ′

2.4 Informal Outline of the Analysis
To analyze the error of the full sketch, we focus on the error in

the estimated rank of an arbitrary item y ∈ U. For clarity in

this informal overview, we consider the failure probability δ to

be constant, and we assume that ε−1 >
√

log
2
(εn), or equivalently,

n < ε−1 · 2
ε−2

. Recall that in our algorithm, all buffers have size

B = Θ(k log(n/k)); we ultimately will set k = Θ
(
ε−1/

√
log(εn)

)
, in

which case B = O
(
ε−1

√
log(εn)

)
.

Let R(y) be the rank of item y in the input stream, and Err(y) =
R̂(y) − R(y) the error of the estimated rank for y. Our analysis of
Err(y) relies on just two properties.

(1) The level-h compactor only does at most R(y)/(k · 2
h ) com-

pactions that affect the error of y (up to a constant factor).

Roughly speaking, this holds by the following reasoning.

First, recall from Observation 3 that y needs to be odd w.r.t

any compaction affecting the error of y, which implies that

at least one item x ≤ y must be removed during that com-

paction. We show that as we move up one level at a time, y’s
rank with respect to the input stream fed to that level falls

by about half (this is formally established in Lemma 9). This

is the source of the 2
h
factor in the denominator. Second, we

show that each compaction operation that affects y can be

“attributed” to k items smaller than or equal toy inserted into

the buffer, which relies on using our particular compaction

schedule (see Lemma 5). This is the source of the k factor in

the denominator.

(2) Let Hy be the smallest positive integer such that 2
Hy ≳

R(y)/B (the approximate inequality ≳ hides a universal con-

stant). Then no compactions occurring at levels above Hy
affect y, because y’s rank relative to the input stream of any

such buffer is less than B/2 and no relative-compactor ever

compacts the lowest-ranked B/2 items that it stores.

Again, this holds because as we move up one level at a time,

y’s rank w.r.t each level falls by about half (see Lemma 9).

Together, this means that the variance of the estimate for y is at

most (up to constant factors):

Hy∑
h=1

R(y)

k · 2
h
· 2

2h =

Hy∑
h=1

R(y)

k
· 2

h , (1)

where in the LHS, R(y)/(k2
h ) bounds the number of level-h com-

paction operations affecting the error (this exploits Property 1

above), and 2
2h

is the variance contributed by each such com-

paction, due to Observation 3 and because items processed by

relative-compactor at level h each represent 2
h
items in the original

stream.

The RHS of Equation (1) is dominated by the term for h = Hy ,

and the term for that value of h is at most (up to constant factors)

R(y)

k
· 2

Hy ≲
R(y)

k
·

R(y)

B
=

R(y)2

k · B
≃

R(y)2 · log(εn)

B2
. (2)

The first inequality in Equation (2) exploits Property 2 above, while

the last equality exploits the fact that B = O(k · log(εn)).5 We

obtain the desired accuracy guarantees so long as this variance

is at most ε2
R(y)2, as this will imply that the standard deviation

is at most ε R(y). This hoped-for variance bound holds so long as

B ≳ ε−1 ·
√

log
2
(εn), or equivalently k ≳ ε−1/

√
log

2
(εn).

2.5 Roadmap for the Formal Analysis
Section 3 establishes the necessary properties of a single relative-

compactor (Algorithm 1), namely that, roughly speaking, each com-

paction operation that affects a designated item y can be charged

to k items smaller than or equal to y added to the buffer. Section 4

then analyzes the full sketch (Algorithm 2), completing the proof of

our result in the streaming setting when a polynomial upper bound

on n is known in advance. Finally, we remove the assumption of

having such an upper bound on n in Section 5.

For the analysis under an arbitrary sequence of merge operations

(i.e., for the proof of full mergeability), we refer to Appendix C.

3 ANALYSIS OF THE RELATIVE-COMPACTOR
IN THE STREAMING SETTING

To analyze our algorithm, we keep track of the error associated with

an arbitrary fixed item y. Throughout this section, we restrict our

5
In the derivations within Equation (2), there is a couple of important subtleties. The

first is that when we replace 2
Hy

with Θ(R(y)/B), that substitution is only valid if

R(y)/B ≥ Ω(1). However, we can assume w.l.o.g. that R(y) ≥ B/2, as otherwise the

algorithm will make no error on y by virtue of storing the lowest-ranked B/2 items

deterministically. The second subtlety is that the algorithm is only well-defined if

k ≥ 2, so when we replace k with Θ(B/log(εn)), that is a valid substitution only if

B ≥ Ω(log(εn)), which holds by the assumption that ε−1 >
√

log
2
(εn).
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attention to any single relative-compactor at level h (Algorithm 1)

maintained by our sketching algorithm (Algorithm 2), and we use

“time t” to refer to the t ’th insertion operation to this particular

relative-compactor.

We analyze the error introduced by the relative-compactor for

an item y. Specifically, at time t , let X t = {x1, . . . ,xt } be the input
stream to the relative-compactor, Z t

be the output stream, and Bt

be the items in the buffer after inserting item xt . The error for the
relative-compactor at time t with respect to item y is defined as

Err
t
h (y) = R(y;X t ) − 2 R(y;Z t ) − R(y;Bt ). (3)

Conceptually, Err
t
h (y) tracks the difference between y’s rank in

the input stream X t
at time t versus its rank as estimated by the

combination of the output stream and the remaining items in the

buffer at time t (output items are upweighted by a factor of 2 while

items remaining in the buffer are not). The overall error of the

relative-compactor is Err
n
h (y), where n is the length of its input

stream. To bound Err
n
h (y), we keep track of the error associated

with y over time, and define the increment or decrement of it as

∆th (y) = Err
t
h (y) − Err

t−1

h (y),

where Err
0

h (y) = 0.

Clearly, if the algorithm performs no compaction operation in

a time step t , then ∆th (y) = 0. (Recall that a compaction is an exe-

cution of lines 6-13 of Algorithm 1.) Let us consider what happens

in a step t in which a compaction operation occurs. Recall from

Observation 3 that if y is even with respect to the compaction, then

y suffers no error, meaning that ∆th (y) = 0. Otherwise, ∆th (y) is

uniform in {−1, 1}.

Our aim is to bound the number of steps t with ∆th (y) , 0, equal

to

∑n
t=1

|∆th (y)|, and use this in turn to help us bound Err
n
h (y). We

call a step t with ∆th (y) , 0 important. Likewise, call an item x with

x ≤ y important. Let Rh (y) be the rank of y in the input stream to

level h; so there are Rh (y) important items inserted to the buffer at

level h (in the notation above, we have Rh (y) = R(y;Xn )). Recall

that k denotes the parameter in Algorithm 1 controlling the size

of the buffer of each relative-compactor and that B denotes the

buffer’s capacity.

Our main analytic result regarding relative-compactors is that

there are at most Rh (y)/k important steps. Its proof explains the

intuition behind our compaction schedule, i.e., why we set L as

described in Algorithm 1.

Lemma 5. Consider the relative-compactor at level h, fed an input
stream of length at most n. For any fixed item y ∈ U with rank Rh (y)
in the input stream to level h, there are at most Rh (y)/k important
steps. In particular,

n∑
t=1

|∆th (y)| ≤ Rh (y)/k and
��
Err

n
h (y)

�� ≤ Rh (y)/k .

Proof. We focus on steps t in which the algorithm performs a

level-h compaction operation (possibly not important), and call a

step t a j-step for j ≥ 1 if the compaction operation in step t (if any)
involves exactly j sections (i.e., LC = j · k in line 7 of Algorithm 1).

Recall from Section 2.1 that sections are numbered from the right,

so that the first section contains the k largest items in the buffer, the

second section contains the next k largest items, and so on. Note

that we think of the buffer as being sorted all the time.

For any j ≥ 1, let sj be the number of important j-steps. Further,
letRh, j (y) be the number of important items that are either removed

from the j-th section during a compaction, or remain in the j-th
section at the end of execution, i.e., after the relative-compactor

has processed its entire input stream. We also define Rh, j (y) for
j = ⌈log

2
(n/k)⌉ + 1. In this case, we define the j-th section to be the

last k slots in the first half of the buffer (which contains B/2 smallest

items); this special section is never involved in any compaction.

Observe that

∑
j≥1

sj is the number of important steps and that∑
j≥1

Rh, j (y) ≤ Rh (y). We will show

sj · k ≤ Rh, j+1
(y) . (4)

Intuitively, our aim is to “charge” each important j-step to k impor-

tant items that are either removed from section j + 1, or remain

in section j + 1 at the end of execution, so that each such item is

charged at most once.

Equation 4 implies the lemma as the number of important steps

is

n∑
t=1

|∆t (y)| =

⌈log
2
(n/k)⌉∑
j=1

sj ≤

⌈log
2
(n/k )⌉∑
j=1

Rh, j+1
(y)

k
≤

Rh (y)

k
.

To show the lower bound on Rh, j+1
(y) in (4), consider an im-

portant j-step t . Since the algorithm compacts exactly j sections
and ∆th (y) , 0, there is at least one important item in section j by

Observation 3. As section j + 1 contains smaller-ranked (or equal-

ranked) items than section j , section j + 1 contains important items

only. We have two cases for charging the important j-step t :

CaseA: There is a compaction operation after step t that involves at
least j+1 buffer sections, i.e., a j ′-step for j ′ ≥ j+1. Let t ′ be the first
such step. Note that just before the compaction in step t ′, the (j+1)-

st section contains important items only as it contains important

items only immediately after step t . We charge the important step t
to the k important items that are in the (j + 1)-st section just before

step t ′. Thus, all of these charged items are removed from level h
in step t ′.

Case B: Otherwise, there is no compaction operation after step t
that involves at least j + 1 buffer sections. Then, we charge step t
to the k important items that are in the (j + 1)-st section at the end

of execution.

It remains to observe that each important item x accounted for in

Rh, j+1
(y) is charged at most once. (Note that different compactions

may be charged to the items which are consumed during the same

later compaction, but our charging will ensure that these are as-

signed to different sections. For example, consider a sequence of

three important compactions that compacts 2 sections, then 1 sec-

tion, then 3. The first compaction will be charged to section 3 of the

last compaction, and the second compaction is charged to section 2

of the last compaction.)

Formally, suppose that x is removed from section j + 1 during

some compaction operation in a step t ′. Item x may only be charged

by some number of important j-steps before step t ′ (satisfying the

condition of Case A). To show there is at most one such important

step, we use the crucial property of our compaction schedule (Fact 4)

that between every two compaction operations involving exactly

8
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j sections, there is at least one compaction that involves more

than j sections. Since any important j-step is charged to the first

subsequent compaction that involves more than j sections, item x
is charged at most once.

Otherwise, x remains in section j + 1 of the level-h buffer at the

end of processing. The proof in this case is similar to the previous

case. Item x may only be charged by some number of important

j-steps (that fall into Case B) such that there are no subsequent

compaction operations involving at least j+1 buffer sections. There

is at most one such important step by Fact 4. This shows (4), which

implies the lemma as noted above. □

4 ANALYSIS OF THE FULL SKETCH IN THE
STREAMING SETTING

We denote by Errh (y) the error for item y at the end of the stream

when comparing the input stream to the compactor of level h and

its output stream and buffer. That is, letting Bh be the items in

the buffer of the level-h relative-compactor after Algorithm 2 has

processed the input stream,

Errh (y) = Rh (y) − 2 Rh+1
(y) − R(y;Bh ). (5)

For the analysis, we first set the value of parameter k of Algo-

rithm 2. Namely, given (an upper bound on) the stream length n, the
desired accuracy 0 < ε ≤ 1 and desired upper bound 0 < δ ≤ 0.5

on failure probability, we let

k = 2 ·


4

ε
·

√
ln

1

δ
log

2
(εn)

 . (6)

In the rest of this section, we suppose that parameters ε and δ satisfy

δ > 1/exp(εn/64) (note that this a very weak assumption as for δ ≤

1/exp(εn/64) the accuracy guarantees hold nearly deterministically

and furthermore, the analysis in Appendix C does not require such

an assumption). We start by showing a lower bound on k · B.

Claim 6. If parameter k is set according to Equation (6) and B is
set as in Algorithm 1 (line 1), then the following inequality holds:

k · B ≥ 2
6 ·

1

ε2
· ln

1

δ
. (7)

Proof. We first need to relate log
2
(n/k) (used to define B, see

Line 1 of Algorithm 1) and log
2
(εn) (that appears in the definition

of k , see Equation (6)). Using the assumption δ > 1/exp(εn/64), we

have k ≤ 8ε−1 ·
√

ln(1/δ ) ≤ 8ε−1 ·
√
εn/64 = ε−1 ·

√
εn, which gives

us

log
2

(n
k

)
≥ log

2

(
εn
√
εn

)
=

log
2
(εn)

2

.

Using this and the definition of k , we bound k · B as follows:

k ·B = 2·k2 ·

⌈
log

2

n

k

⌉
≥ 2·26 ·

1

ε2
·

ln
1

δ
log

2
(εn)

·
log

2
(εn)

2

= 2
6 ·

1

ε2
·ln

1

δ
.

□

We now provide bounds on the rank of y on each level, starting

with a simple one that will be useful for bounding the maximum

level h with Rh (y) > 0.

Observation 7. Rh+1
(y) ≤ max{0,Rh (y) − B/2} for any h ≥ 0.

Proof. Since the lowest-ranked B/2 items in the input stream to

the level-h relative-compactor are stored in the buffer Bh and never

given to the output stream of the relative-compactor, it follows

immediately that Rh+1
(y) ≤ max{0,Rh (y) − B/2}. □

Next, we prove that Rh (y) roughly halves with every level. This

is easy to see in expectation and we show that it is true with high

probability up to a certain crucial level H (y). Here, we define H (y)

to be the minimal h for which 2
2−h

R(y) ≤ B/2. For h = H (y) − 1

(assuming H (y) > 0), we particularly have 2
3−H (y)

R(y) ≥ B/2, or

equivalently

2
H (y) ≤ 2

4 · R(y)/B. (8)

Below, in Lemma 9, we show that no important item (i.e., one

smaller than or equal to y) can ever reach level H (y). Recall that a
zero-mean random variable X with variance σ 2

is sub-Gaussian if

E[exp(sX )] ≤ exp(− 1

2
· s2 ·σ 2) for any s ∈ R; note that a (weighted)

sum of independent zero-mean sub-Gaussian variables is a zero-

mean sub-Gaussian random variable as well. We will use the stan-

dard (Chernoff) tail bound for sub-Gaussian variables:
6

Fact 8. LetX be a zero-mean sub-Gaussian variable with variance
at most σ 2. Then for any a > 0, it holds that

Pr[X > a] ≤ exp

(
−

a2

2σ 2

)
and Pr[X < −a] ≤ exp

(
−

a2

2σ 2

)
.

Lemma 9. Assuming H (y) > 0, with probability at least 1 − δ it
holds that Rh (y) ≤ 2

−h+1
R(y) for any h < H (y).

Proof. We prove by induction on 0 ≤ h < H (y) that, con-

ditioned on Rℓ(y) ≤ 2
−ℓ+1

R(y) for any ℓ < h, with probability

at least 1 − δ · 2
h−H (y)

it holds that Rh (y) ≤ 2
−h+1

R(y). Taking
the union bound over all 0 ≤ h < H (y) implies the claim. As

R0(y) = R(y), the base case follows immediately.

Next, consider h > 0 and condition on Rℓ(y) ≤ 2
−ℓ+1

R(y) for
any ℓ < h. Observe that any compaction operation at any level ℓ

that involves a important items inserts
1

2
a such items to the input

stream at level ℓ + 1 in expectation, no matter whether a is odd

or even. Indeed, if a is odd, then the number of important items

promoted is
1

2
(a + X ), where X is a zero-mean random variable

uniform on {−1, 1}. For an even a, the number of important items

that are promoted is
1

2
a with probability 1.

Thus, random variable Rℓ(y) for any level ℓ > 0 is generated

by the following random process: To get Rℓ(y), start with Rℓ−1
(y)

important items and remove those stored in the level-(ℓ−1) relative-

compactor Bℓ−1
at the end of execution; there are R(y;Bℓ−1

) ≤ B
important items inBℓ−1

. Then, as described above, each compaction

operation at level ℓ−1 involving a > 0 important items promotes to

level ℓ either 1

2
a important items if a is even, or

1

2
(a+X ) important

items if a is odd. In total, Rℓ−1
(y) − R(y;Bℓ−1

) important items are

involved in compaction operations at level ℓ − 1. Summarizing, we

have

Rℓ(y) =
1

2

· (Rℓ−1
(y) − R(y;Bℓ−1

) + Binomial(mℓ−1
)) , (9)

where Binomial(n) represents the sum of n zero-mean i.i.d. random

variables uniform on {−1, 1} andmℓ−1
is the number of important

6
See, e.g., Lemma 1.3 of https://ocw.mit.edu/courses/mathematics/

18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_

CourseNotes.pdf.

9
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compaction operations at level ℓ − 1 (which are those involving an

odd number of important items).

To simplify (9), consider the following sequence of random vari-

ables Y0, . . . ,Yh : Start with Y0 = R(y) and for 0 < ℓ < h let

Yℓ =
1

2

· (Yℓ−1
+ Binomial(mℓ−1

)) . (10)

Note that E[Yℓ] = 2
−ℓ

R(y). Since variables Yℓ differ from Rℓ(y)
only by not subtracting R(y;Bℓ−1

) at every level ℓ > 0, variable Yh
stochastically dominates variable Rh (y), so in particular,

Pr[Rh (y) > 2
−h+1

R(y)] ≤ Pr[Yh > 2
−h+1

R(y)] , (11)

which implies that it is sufficient to bound Pr[Yh > 2
−h+1

R(y)].
Unrolling the definition of Yh in (10), we obtain

Yh = 2
−h · R(y) +

h−1∑
ℓ=0

2
−h+ℓ · Binomial(mℓ) . (12)

Observe that Yh equals a fixed amount (2
−h ·R(y)) plus a zero-mean

sub-Gaussian variable

Zh =
h−1∑
ℓ=0

2
−h+ℓ · Binomial(mℓ) , (13)

since Binomial(n) is a sum of n independent zero-mean sub-

Gaussian variables (with variance 1).

To bound the variance ofZh , first note that for any ℓ < h, we have

mℓ ≤ Rℓ(y)/k ≤ 2
−ℓ+1

R(y)/k by Lemma 5 and by conditioning on

Rℓ(y) ≤ 2
−ℓ+1

R(y). As Var[Binomial(n)] = n, the variance of Zh is

Var[Zh ] ≤
h−1∑
ℓ=0

2
−2h+2ℓ ·mℓ ≤

h−1∑
ℓ=0

2
−2h+2ℓ ·

2
−ℓ+1

R(y)

k

=

h−1∑
ℓ=0

2
−2h+ℓ+1

R(y)

k
≤

2
−h+1 · R(y)

k
.

Note that Pr[Yh > 2
−h+1

R(y)] = Pr[Zh > 2
−h

R(y)]. To bound

the latter probability, we apply the tail bound for sub-Gaussian

variables (Fact 8) to get

Pr[Zh > 2
−h

R(y)] < exp

(
−

2
−2h · R(y)2

2 · (2−h+1 · R(y)/k)

)
= exp

(
−2

−h−2 · R(y) · k
)

= exp

(
−2

−h+H (y)−6 · 2
4−H (y)

R(y) · k
)

≤ exp

(
−2

−h+H (y)−6 · B · k
)

≤ exp

(
−2

−h+H (y)−6 · 2
6 ·

1

ε2
· ln

1

δ

)
≤ exp

(
−2

−h+H (y) · ln

1

δ

)
= δ2

H (y)−h
≤ δ · 2

−H (y)+h ,

where the second inequality uses 2
4−H (y)

R(y) ≥ B (by the defi-

nition of H (y), cf. Equation (8)), the third inequality follows from

Claim 6, the fourth inequality uses ε ≤ 1, and the last inequality

uses δ ≤ 0.5. As explained above, this concludes the proof. □

In what follows, we condition on the bound on Rh (y) in Lemma 9

for any h < H (y).

Lemma 10. Conditioned on the bound on RH (y)−1
(y) in Lemma 9,

it holds that RH (y)(y) = 0.

Proof. According to Lemma 9 and the definition of H (y) as the

minimal h for which 2
2−h

R(y) ≤ B/2,

RH (y)−1
(y) ≤ 2

2−H (y)
R(y) ≤

1

2

B .

Invoking Observation 7, we get RH (y)(y) ≤ max{0,RH (y)−1
(y) −

B/2} = 0. □

We are now ready to bound the overall error of the sketch for

item y, i.e., Err(y) = R̂(y) − R(y) where R̂(y) is the estimated rank

of y. It is easy to see that

Err(y) =
H∑
h=0

2
h

Errh (y),

where H is the highest level with a relative-compactor (that never

produces any output). To bound this error we refine the guarantee

of Lemma 5. Notice that for any particular relative-compactor, the

bound

∑n
t=1

|∆th (y)| referred to in Lemma 5 applied to a level h is

a potentially crude upper bound on Errh (y) =
∑n
t=1

∆th (y): Each

non-zero term ∆th (y) is positive or negative with equal probability,

so the terms are likely to involve a large amount of cancellation. To

take advantage of this, we bound the variance of Err(y).

Lemma 11. Conditioned on the bound on Rh (y) in Lemma 9 for
any h < H (y), Err(y) is a zero-mean sub-Gaussian random variable
with Var[Err(y)] ≤ 2

5 · R(y)2/(k · B).

Proof. Consider the relative-compactor at any level h. By
Lemma 5, Errh (y) is a sum of at most Rh (y)/k random variables,

i.i.d. uniform in {−1, 1}. In particular, Errh (y) is a zero-mean sub-

Gaussian random variable with Var[Errh (y)] ≤ Rh (y)/k . Thus,
Err(y) is a sum of independent zero-mean sub-Gaussian random

variables, and as such is itself a zero-mean sub-Gaussian random

variable.

It remains to bound the variance of Err(y), for which we first

bound Var[Errh (y)] for each h. If Rh (y) = 0, then Observation 3

implies that Errh (y) = 0, and hence that Var[Errh (y)] = 0. Thus,

using Lemma 10, we have Var[Errh (y)] = 0 for any h ≥ H (y). For
h < H (y), we use Var[Errh (y)] ≤ Rh (y)/k to obtain:

Var[Err(y)] =

H (y)−1∑
h=0

2
2h

Var[Errh (y)] ≤

H (y)−1∑
h=0

2
2h ·

Rh (y)

k

≤

H (y)−1∑
h=0

2
h+1 ·

R(y)

k
≤ 2

H (y)+1 ·
R(y)

k
≤ 2

5 ·
R(y)2

k · B
,

where the second inequality is due to Lemma 9 and the last inequal-

ity follows from (8). □

To show that the space bound in maintained, we also need to

bound the number of relative-compactors.

Observation 12. The number of relative-compactors ever created
by the full algorithm (Algorithm 2) is at most ⌈log

2
(n/B)⌉ + 1.

10
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Proof. Each item on level h has weight 2
h
, so there are at most

n/2
h
items inserted to the buffer at that level. Applying this ob-

servation to h = ⌈log
2
(n/B)⌉, we get that on this level, there are

fewer than B items inserted to the buffer, which is consequently

not compacted, so the highest level has index at most ⌈log
2
(n/B)⌉.

The claim follows (recall that the lowest level has index 0). □

We are now ready to prove themain result of this section, namely,

the accuracy guarantees in the streaming setting when the stream

length is essentially known in advance.

Theorem 13. Assume that (a polynomial upper bound on) the
stream length n is known in advance. For any parameters 0 < δ ≤ 0.5

and 0 < ε ≤ 1 satisfying δ > 1/exp(εn/64), let k be set as in (6). Then,
for any fixed item y, Algorithm 2 with parameters k and n computes
an estimate R̂(y) of R(y) with error Err(y) = R̂(y) − R(y) such that
Pr [| Err(y)| ≥ ε R(y)] < 3δ . If ε ≤ 4 ·

√
ln(1/δ )/log

2
(εn), then the

memory used by the algorithm is O
(
ε−1 · log

1.5(εn) ·
√

log(1/δ )
)
;

otherwise, the algorithm uses O
(
log

2(εn)
)
memory words.

Proof. Note that k is an even positive integer as required by

Algorithm 2. By Lemma 9, with probability at least 1 − δ , we have

Rh (y) ≤ 2
−h+1

R(y) for any h < H (y) and we condition on this

event happening.

We again apply the standard (Chernoff) tail bound for sub-

Gaussian variables (Fact 8) together with Lemma 11 (for which

we need the bound on Rh (y) for any h < H (y)) and obtain

Pr [| Err(y)| ≥ ε R(y)] < 2 exp

(
−

ε2 · R(y)2

2 · 2
5 · R(y)2/(k · B)

)
≤ 2 exp

(
−
ε2 · 2

6 · ε−2 · ln
1

δ
2

6

)
= 2 exp

(
− ln

1

δ

)
= 2δ ,

where we use Claim 6 in the second inequality. This concludes the

calculation of the failure probability.

Regarding the memory usage, there are at most ⌈log
2
(n/B)⌉+1 ≤

log
2
(εn) relative-compactors by Observation 12, and each requires

B = 2 · k · ⌈log
2
(n/k)⌉ memory words. Thus, the memory needed

to run the algorithm is at most

log
2
(εn) · 2 · k ·

⌈
log

2

n

k

⌉
≤ log

2
(εn) · 2 · 2 ·


4

ε
·

√
ln

1

δ
log

2
(εn)

 ·O (log(εn)) , (14)

where we use that ⌈log
2
(n/k)⌉ ≤ O (log(εn)), which follows from

k ≥ ε−1/
√

log
2
(εn). In the case ε ≤ 4 ·

√
ln(1/δ )/log

2
(εn), we have

a := 4ε−1 ·
√

ln(1/δ )/log
2
(εn) ≥ 1, so ⌈a⌉ ≤ 2a and it follows

that (14) is bounded byO
(
ε−1 · log

1.5(εn) ·
√

log(1/δ )
)
. Otherwise,

a < 1, thus (14) becomes at most O
(
log

2(εn)
)
. □

Update time. We now analyze the amortized update time of Al-

gorithm 2 and show that it can be made O(logB) = O(log(k) +
log log(εn)), i.e., the algorithm processes n streaming updates in

total timeO(n·logB). To see this, first observe that the time complex-

ity is dominated, up to a constant factor, by running Algorithm 1

for the relative-compactor at level 0. Indeed, the running time can

be decomposed into the operations done by Algorithm 2 itself, plus

the running time of Algorithm 1 for each level of the sketch, and

the former is bounded by the latter. Moreover, at level h there are

at most n/2
h
items added to the buffer, implying that the running

time of Algorithm 1 decreases exponentially with the level. At level

0, the update time isO(1), except for performing compaction opera-

tions (line 6-13 of Algorithm 1). To make those faster, we maintain

the buffer sorted after each insertion, which can be achieved by

using an appropriate data structure in time O(logB) per update.
Then the time to execute each compaction operation is linear in

the number of items removed from the buffer, making it amortized

constant. Hence, the amortized update time with such adjustments

is O(logB).

5 HANDLING UNKNOWN STREAM LENGTHS
The algorithm of Section 2.2 and analysis in Sections 3-4 proved

Theorem 13 in the streaming setting assuming that (an upper bound

on) n is known, where n is the true stream length. The space usage

of the algorithm grows polynomially with the logarithm of this

upper bound, so if this upper bound is at most nc for some constant

c ≥ 1, then the space usage of the algorithm will remain as stated

in Theorem 13, with only the hidden constant factor changing.

In the case that such a polynomial upper bound on n is not

known, we modify the algorithm slightly, and start with an initial

estimate N0 of n, such as N0 = O(ε
−1). As soon as the stream length

hits the current estimate Ni , the algorithm “closes out” the current

data structure and continues to store it in “read only” mode, while

initializing a new summary based on the estimated stream length of

Ni+1 = N 2

i .
7
This process occurs at most log

2
log

2
(εn) many times,

before the guess is at least the true stream length n. At the end of

the stream, the rank of any item y is estimated by summing the

estimates returned by each of the at most log
2

log
2
(εn) summaries

stored by the algorithm.

To prove Theorem 13 for unknown stream lengths, we need

to bound the space usage of the algorithm, and the probability of

having a too large error for a fixed item y. We start with some

notation. Let ℓ be the biggest index i of estimate Ni used by the

algorithm; note that ℓ ≤ log
2

log
2
(εn). Let σi denote the substream

processed by the summary with the i’th guess for the stream length

for i = 0, . . . ℓ. Let σ ′ ◦σ ′′
denote the concatenation of two streams

σ ′
and σ ′′

. Then the complete stream processed by the algorithm

is σ = σ0 ◦ σ1 ◦ · · · ◦ σℓ . Let ki and Bi be the values of parameters

k and B computed for estimate Ni .

7
In a practical implementation, we suggest not to close out the current summary,

but rather recompute the parameters k and B of every relative-compactor in the

summary, according to the new estimate Ni+1 , and continue with using the summary.

The analysis in Appendix C (which applies in the more general mergeability setting)

shows that the same accuracy guarantees as in Theorem 13 hold for this variant of

the algorithm. Here, we choose to have one summary for each estimate of n because

it is amenable to a much simpler analysis (it is not clear how to extend this simpler

analysis from the streaming setting to the general mergeability setting of Appendix C).

11
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Space bound. We claim that the sizes of summaries for the sub-

streams σ0,σ1, . . . ,σℓ sum up to O
(
ε−1 · log

1.5(εn) ·
√

log(1/δ )
)
,

as required. Here, we assume for simplicity that ε ≤

4 ·
√

ln(1/δ )/log
2
(εn); the other case can be handled simi-

larly. By Theorem 13, the size of the summary for σi is

O
(
ε−1 · log

1.5(εNi ) ·
√

log(1/δ )
)
. In the special case ℓ = 0, the

size of the summary for σ0 satisfies the bound provided that

N0 = O(ε−1). For ℓ ≥ 1, since Nℓ−1
< n and Nℓ = N 2

ℓ−1
, it holds

that Nℓ ≤ n2
and thus, the size of the summary for σℓ satisfies

the claimed bound. As Ni+1 = N 2

i , the log
1.5(εNi ) factor in the

size bound from Theorem 13 increases by a factor of 2
1.5

when we

increase i . It follows that the total space usage is dominated, up to

a constant factor, by the size of the summary for σℓ . □

Failure probability. We need to show that | Err(y)| = |R̂(y) −
R(y)| ≤ ε R(y) with probability at least 1 − δ for any fixed item y.

Note that R(y) = R(y;σ ) =
∑ℓ
i=0

R(y;σi ).
We apply the analysis in Section 4 to all of the summaries at

once. Observe that for the tail bound in the proof of Theorem 13,

we need to show that Err(y) is a zero-mean sub-Gaussian random

variable with a suitably bounded variance. Let Err
i (y) be the er-

ror introduced by the summary for σi . By Lemma 11, Err
i (y) is

a zero-mean sub-Gaussian random variable with Var[Err
i (y)] ≤

2
5 ·R(y;σi )

2/(ki ·Bi ). As Err(y) =
∑
i Err

i (y) and as the summaries

are created with independent randomness, variable Err(y) is also
zero-mean sub-Gaussian and its variance is bounded by

Var[Err(y)] =
ℓ∑
i=0

Var[Err
i (y)] ≤

ℓ∑
i=0

2
5 ·

R(y;σi )
2

ki · Bi
≤

ε2 · R(y)2

2 · ln(1/δ )

where the last inequality uses that

∑ℓ
i=0

R(y;σi )
2 ≤ R(y)2, which

follows from R(y) =
∑ℓ
i=0

R(y;σi ), and thatki ·Bi = Ω(ε−2 ·ln(1/δ )),
which holds by Claim 6. Applying the tail bound for sub-Gaussian

variables similarly as in the proof of Theorem 13 concludes the

proof of Theorem 13 for unknown stream lengths. □

6 DISCUSSION AND OPEN PROBLEMS
For constant failure probability δ , we have shown an O(ε−1 ·

log
1.5(εn)) space upper bound for relative error quantile approxi-

mation over data streams. Our algorithm is provably more space-

efficient than any deterministic comparison-based algorithm, and

is within a Õ
(√

log(εn)
)
factor of the known lower bound for ran-

domized algorithms (even non-streaming algorithms, see Appendix

A). Moreover, the sketch output by our algorithm is fully mergeable,

with the same accuracy-space trade-off as in the streaming setting,

rendering it suitable for a parallel or distributed environment. The

main remaining question is to close this Õ(
√

log(εn))-factor gap.
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A A LOWER BOUND FOR NON-COMPARISON
BASED ALGORITHMS

Cormode and Veselý [6, Theorem 6.5] proved an Ω(ε−1 · log
2(εn))

lower bound on the number of items stored by any deterministic

comparison-based streaming algorithm for the relative-error quan-

tiles problem. Below, we provide a lower bound which also applies

to offline, non-comparison-based randomized algorithms, but at

the (necessary) cost of losing a log(εn) factor in the resulting space

bound. This result appears not to have been explicitly stated in

the literature, though it follows from an argument similar to [4,

Theorem 2]. We provide details in this appendix for completeness.

Theorem 14. For any randomized algorithm that processes a data
stream of items from universeU of size |U| ≥ Ω(ε−1 · log(εn)) and
outputs a sketch that solves the all-quantiles approximation problem
for multiplicative error ε with probability at least 2/3 requires the
sketch to have size Ω

(
ε−1 · log(εn) · log(ε |U|)

)
bits of space.

Proof. We show that any multiplicative-error sketch for

all-quantiles approximation can be used to losslessly encode

an arbitrary subset S of the data universe U of size |S | ≥

Ω
(
ε−1

log(εn)
)
. This requires log

2

( |U |

|S |
)
= Θ

(
log((|U|/|S |) |S |)

)
=

Θ (|S | log (ε |U|)) bits of space. The theorem follows.

Let ℓ = 1/(8ε) and k = log
2
(εn); for simplicity, we assume

that both ℓ and k are integers. Let S be a subset of U of size

s := ℓ ·k . We will construct a stream σ of length less than ℓ · 2k ≤ n
such that a sketch solving the all-quantiles approximation problem

for σ enables reconstruction of S . To this end, let {y1, . . . ,ys } de-
note the elements of S in increasing order. Consider the stream σ
where items y1, . . . ,yℓ each appear once, items yℓ+1

, . . . ,y
2ℓ ap-

pear twice, and in general items yiℓ+1
, . . . ,y(i+1)ℓ appear 2

i
times,

for i = 0, . . . ,k − 1. Let us refer to all universe items in the interval

[yiℓ+1
,y(i+1)ℓ] as “Phase i” items.

The construction of σ means that the multiplicative error ε in
the estimated rank of any Phase i item is at most 2

i+1/8 < 2
i−1

.

This means that for any phase i ≥ 0 and integer j ∈ [1, ℓ], one can

identify item yiℓ+j by finding the smallest universe item whose

estimated rank is strictly greater than (2i − 1) · ℓ + 2
i · j − 2

i−1
.

Here, (2i − 1) · ℓ is the number of stream updates corresponding to

items in Phases 0, . . . , i − 1, while 2
i−1

is an upper bound on the

error of the estimated rank of any Phase i item. Hence, from any

sketch solving the all-quantiles approximation problem for σ one

can obtain the subset S , which concludes the lower bound. □

Theorem 14 is tight up to constant factors, as an optimal sum-

mary consisting ofO(ε−1 · log(εn)) items can be constructed offline.

For ℓ = ε−1
, this summary stores all items of rank 1, . . . , 2ℓ ap-

pearing in the stream and assigns them weight one, stores every

other item of rank between 2ℓ + 1 and 4ℓ and assigns them weight

2, stores every fourth item of rank between 4ℓ + 1 and 8ℓ and

assigns them weight 4, and so forth. This yields a weighted core-

set S for the relative-error quantiles approximation, consisting of

|S | = Θ (ℓ · log(εn)) many items. Such a set S can be represented

with log
2

( |U |

|S |
)
= Θ

(
ε−1 · log(εn) · log(ε |U|)

)
many bits.

B PROOF OF COROLLARY 1
Here we prove Corollary 1, restated for the reader’s convenience.

Corollary 1 (All-Quantiles Approximation). The error
bound from Theorem 1 can be made to hold for all y ∈ U simul-
taneously with probability 1 − δ while storing

O
©«ε−1 · log

1.5(εn) ·

√
log

(
log(εn)

εδ

)ª®¬
stream items if ε ≤ O

(√
log

1

εδ /log(εn)

)
and O

(
log

2(εn)
)
items

otherwise.

Proof. Let S∗ be the offline optimal summary of the streamwith

multiplicative error ε/3, i.e., a subset of items in the stream such

that for any item x , there is y ∈ S∗ with | R(y) −R(x)| ≤ (ε/3) ·R(x).
Here, y is simply the closest item to x in the total order that is an

element of S∗. Observe that S∗ has O(ε−1 · log(εn)) items; see the

remark below Theorem 14 in Appendix A for a construction of S∗.
Thus, if our sketch with parameter ε ′ = ε/3 is able to compute

for any y ∈ S∗ a rank estimate R̂(y) such that |R̂(y) − R(y)| ≤

(ε/3) · R(y), then we can approximate R(x) by R̂(y) using y ∈ S∗

with | R(y) − R(x)| ≤ (ε/3) · R(x) and the multiplicative guarantee

for x follows from

|R̂(y) − R(x)| ≤ |R̂(y) − R(y)| + | R(y) − R(x)|

≤
ε

3

· R(y) +
ε

3

· R(x)

≤

( ε
3

· (1 +
ε

3

) +
ε

3

)
· R(x)

≤ ε · R(x) .

It remains to ensure that our algorithm provides a good-enough

rank estimate for any y ∈ S∗. We apply Theorem 1 with error

parameter ε ′ = ε/3 and with failure probability set to δ ′ = δ/|S∗ | =
Θ (δ · ε/log(εn)). By the union bound, with probability at least 1 −

δ , the resulting sketch satisfies the (1 ± ε/3)-multiplicative error

guarantee for any item in S∗. In this event, the previous paragraph

implies that the (1 ± ε)-multiplicative guarantee holds for all x ∈

U. The space bound follows from Theorem 1 with ε ′ and δ ′ as
above. □

C FULL MERGEABILITY
We show that our sketch is fully mergeable, as formalized in Theo-

rem 1 from Section 1. Fully-mergeable sketches allow the ability

to sketch many different streams (or any inputs) and then merge

the resulting sketches (via an arbitrary sequence of pairwise merge

operations) to get an accurate summary of the concatenation of the

streams. Mergeable sketches form an essential primitive for parallel

and distributed processing of massive data sets.

The merge operation takes as input two sketches S ′ and S ′′ that
processed two separate streams σ ′

and σ ′′
and outputs a sketch S

that summarizes the concatenated stream σ = σ ′ ◦ σ ′′
(the order

of σ ′
and σ ′′

does not matter here). For full mergeability, S must

satisfy the space and accuracy guarantees as if it was created by

processing stream σ in one pass. Moreover, we do not assume that

we built S ′ by processing stream σ ′
directly and similarly for S ′′,

but we allow to create S ′ and S ′′ using merge operations. Thus,

we may create the resulting summary from many summaries by

merging them in an arbitrary way.
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We stress that we do not assume any advance knowledge about

n, the total size of all the inputs merged, which indeed may not be

available in many applications.

C.1 Merge Operation
In this section, we describe a merge operation of our sketch, without

assuming a foreknowledge of the total input size n. The description
builds on Section 2.3, which outlines a simplified merge procedure

under the assumption that a polynomial upper bound on n is avail-

able. To facilitate the merge operation, each sketch maintains a

list RelCompactors of its relative-compactors and the following

variables:

H = index of the highest level with a relative-compactor in the

sketch.

n = size of the input currently summarized by the sketch.

N = an upper bound on n, based on which the subsequent param-

eters k and B (defined below) are calculated.

ˆk = a parameter that depends on the desired accuracy ε and failure

probability δ , namely,
ˆk = ε−1 ·

√
ln(1/δ )—see (25) in Section

C.5. Unlike N , the parameter
ˆk remains constant during the

computation. The section size parameter k (defined below)

depends on
ˆk in addition to N .

k = size of a buffer section.

B = size of the buffer at each level.

The parameter N is set similarly as in Section 5, that is, it is equal

to Ni for some i , where N0 = ⌈28 · ˆk⌉ and Ni+1 = N 2

i . We set

the parameters k and B based on N similarly as in Section 4 (cf.

Equation (6)), namely,

k(N ) = 2
5·


ˆk√

log
2
(N / ˆk)

 and B(N ) = 2·k(N )·

⌈
log

2

(
N

k(N )

)
+ 1

⌉
.

(15)

Note that compared to (6), we increase the constant factor in

front of the ceiling function in the definition of k , which ensures

that k ≥ 2
5
, and we increase the number of buffer sections by one.

The merge operation that creates sketch S from S ′ and S ′′ goes
as follows: Suppose that both S ′ and S ′′ are based on the same

parameter
ˆk and that S ′ has at least as many levels as S ′′ (otherwise,

we swap the sketches). Then, via the following procedure, we merge

S ′′ into S ′, so S ′′ acts as a source sketch, while S ′ is a target sketch
of the merge operation. First, we compute the parameters of the

resulting sketch. For sketch S resulting from the merge operation,

S .n is just a sum of S ′.n and S ′′.n. If S ′.N ≥ S .n, then we keep

parameters N ,k, and B as they are set in S ′. Otherwise, S ′.N <
S .n = S ′.n+S ′′.n, so S ′.N would be too small after merging. In this

case, we choose the next upper bound by setting S .N = S ′.N 2
and

also recompute k and B as described in Equation (15) above.

For technical reasons, before changing the parameters we per-

form a special compaction operation at each level of both S ′ and
S ′′. More precisely, we perform these special compactions on each

level h of S ′ if S .N > S ′.N and the level-h buffer of S ′ contains at
least (S ′.B)/2 items, and on level h of S ′′ if S .N > S ′′.N and the

level-h buffer of S ′′ contains at least (S ′′.B)/2 items. Note that from

the viewpoint of S ′′, parameters may change (i.e., S ′′.N < S .N )

even if S .N = S ′.N . A special compaction on S ′ leaves at most

S ′.B/2 items at each level and similarly for S ′′. We call compaction

operations that are not special scheduled.
Recall from Section 2.3 that the crucial part of the merge opera-

tion is to combine the states of the compaction schedules at each

level in a manner that ensures that relative-error guarantees are

satisfied for the merged sketch.
8
Consider a level h and let C ′

and

C ′′
be the states of the compaction schedule at level h in S ′ and S ′′,

respectively. The new stateC at level h will be the bitwise OR ofC ′

andC ′′
; we explain the intuition behind using the bitwise OR below.

Note that while in the streaming setting, the state corresponds to

the number of compaction operations already performed, after a

merge operation this may not hold anymore. Still, if the state is

zero, this indicates that the buffer has not yet been subject to any

compactions.

Having set up the parameters and states at each level, we con-

catenate the level-h buffers of S ′ and of S ′′ at each level that appears
in both of them. Then we perform a single compaction operation

at each level that has at least S .B items, in the bottom-up fashion.

For such a compaction operation, all but the smallest S .B items in

the buffer are automatically included in the compaction, while the

smallest B items are treated exactly as a full buffer is treated in the

streaming setting to determine what suffix is compacted. That is,

the state variable C of the compaction schedule determines how

many sections amongst the smallest B items in the buffer are com-

pacted, via the number of trailing 1s in the binary representation

of C . If this number of trailing 1s is j ≥ 0, then j + 1 sections are

compacted and we say that the compaction involves exactly j + 1

sections of the buffer. Thus, there is at most one compaction per

level during the merge operation.

Algorithm 4 provides a pseudocode describing the merge opera-

tion specified above. For simplicity, in the pseudocode we merge

sketch S ′′ into S ′ so that after performing the procedure S ′ becomes

the sketch S resulting from the merge operation . We remark that

inserting a single item x can be viewed as a trivial merge with a

summary consisting just of x (with weight 1).

Several remarks and observations are in order. First, the com-

bined buffer contains at most 2 · S .B items before the merge proce-

dure begins performing compactions level-by-level, because each

buffer of S ′ and each buffer of S ′′ stores at most S .B items. Second,

when we perform a compaction on a level-h buffer during a merge

procedure, it contains no more than
7

2
· S .B items. To see this, ob-

serve that there are three sources of input to the buffer at level h
during a merge operation: the at most S .B items in S ′ at level h
at the start of the merge operation, the at most S .B items in S ′′ at
level h at the start of the merge operation, and the output of the

level-(h − 1) buffer during the merge procedure. An easy inductive

argument shows that the third source of inputs consists of at most

3

2
· S .B item, as follows: Observe that if the level-(h − 1) buffer has

size at most
7

2
S .B when it is compacted, then the number of items

compacted by that buffer is at most
7

2
S .B − 1

2
S .B = 3S .B, and hence

the number of items output by the compaction is at most
3

2
· S .B

(here, we also use that S .B is divisible by four by (15), so
3

2
· S .B is

8
By state of the compaction schedule, we mean the variable that determines how many

sections of the buffer to include in a compaction operation if one is performed. In the

streaming setting (Algorithm 1), we denoted this variable by C , and maintain this

notation in the mergeability setting.
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Algorithm 4Merge operation

Input: Sketches S ′ and S ′′ to be merged such that S ′. ˆk = S ′′. ˆk and

S ′.H ≥ S ′′.H
Output: A sketch answering rank queries for the combined inputs of S ′

and S ′′ ▷ We merge S ′′ into S ′

1: Set S ′.n = S ′.n + S ′′.n ▷ Combined input size

2: if S ′.N < S ′.n then ▷ Upper bound on input size is too small

3: SpecialCompactions(S ′)
4: Set S ′.N = S ′.N 2 ▷ Square the upper bound

5: Set S ′.k and S ′.B according to (15)

6: if S ′′.N < S ′.N then
7: SpecialCompactions(S ′′)
8: for h = 0, . . . , S ′′.H do
9: ▷ Combine buffers and states of compaction schedules

10: Insert all items in S ′′.RelCompactors[h] into S ′.RelCompactors[h]
11: S ′.RelCompactors[h].C = S ′.RelCompactors[h].C OR

S ′′.RelCompactors[h].C
12: for h = 0, . . . , S ′.H do
13: if there are at least S ′.B items in S ′.RelCompactors[h] then
14: ▷ Scheduled compaction

15: Compute z = number of trailing 1s in binary representation of

S ′.RelCompactors[h].C
16: Set s = S ′.B − (z + 1) · S ′.k + 1 ▷ First slot of the buffer

involved in the compaction

17: PerformCompaction(S ′, h, s )
18: return S ′

19: function SpecialCompactions(Ŝ )
20: for h = 0, . . . , Ŝ .H − 1 do
21: PerformCompaction(Ŝ, h, Ŝ .B/2) ▷ Does nothing if Ŝ [h]

contains ≤ Ŝ .B/2 items

22: function PerformCompaction(Ŝ, h, s )
23: if h = Ŝ .H then
24: Increase Ŝ .H by one

25: Initialize relative-compactor at RelCompactors[h + 1]

26: Set B = Ŝ .RelCompactors[h] ▷ The level-h buffer of Ŝ
27: Let |B | be the number of items stored in B

28: Sort items in B in non-descending order

29: Set Z = equally likely either even or odd indexed items in the range

B[s : |B |]

30: ▷ Note that the range B[s : |B |] may be of an odd size, which

does not cause any issues

31: Insert each item in Z to S .RelCompactors[h + 1]

32: Mark slots B[s : |B |] in the buffer as clear

33: Increase B .C by 1

even). This guarantees that at the time a level-h buffer is actually

compacted during a merge procedure, it contains no more than

7

2
· S .B items.

Third, using the bitwise OR in line 11 to combine the states has

two simple but important implications.

Fact 15. When the j-th bit of C ′ or of C ′′ is set to 1, then the j-th
bit of C = C ′ OR C ′′ is also set to 1.

We use this basic property of bitwise OR to show an analogue of

Fact 4—informally that between every two compaction operations

involving exactly j sections, there is one that involves more than j
sections. See Fact 18 for details.

Fact 16. The bitwise OR of C ′ and C ′′ (interpreted as bitstrings)
is no larger than C ′ +C ′′ (interpreted as integers).

Fact 16 will be used later to show that the state C never has

more than ⌈log
2
(S .N /S .k)⌉ bits, so we never compact more than

⌈log
2
(S .N /S .k)⌉ buffer sections during a scheduled compaction

(only the special compaction involves all ⌈log
2
(S .N /S .k)⌉ + 1 sec-

tions). See Observation 17 for details.

C.2 Preliminaries for the Analysis of the
Merge Procedure

Consider a sketch S built using an arbitrary sequence of merge oper-

ations from an input of sizen. As we will show, that the space bound
holds for S follows from an argument similar to the one in the proof

of Theorem 13, but the calculation of the failure probability needs

to be modified compared to Section 4. The main challenge is that

the parameters k and B change as more and more merge operations

are performed. We introduced special compactions into the merge

procedure specifically to handle these changes in parameters in the

analysis.

To prove that the accuracy guarantees hold for S , consider the
binary treeT in which each of n leaves corresponds to a single item

of the input. Internal nodes correspond to merge operations (recall

that inserting one item to the sketch can be seen as the merge of

the sketch with a trivial sketch storing the item to be inserted), and

hence each internal node t in T represents a sketch St resulting
from the merge operation that corresponds to node t . Also, for a
particular level h, t represents the level-h buffer of St . The root of
T represents the final merge operation, which outputs S . The two
children of each internal node are ordered so that the left child

corresponds to the target sketch S ′ and the right child to the source
sketch S ′′.

Recall that the merge operation captured by an internal node t
performs at most one scheduled compaction operation at each level

h, and we say that t represents the level-h compaction operation

(if any). We further introduce additional nodes to represent special

compactions. Suppose that at node t , sketch S ′ (represented by

node t ′) is to be merged with sketch S ′′ (represented by node t ′′) to
form sketch S . If special compactions are performed on S ′ during
the merge operation, then we subdivide the edge between nodes t ′

and t by adding a new node t ′
1
to represent the special compaction

operation applied to S ′ and include the two edges (t ′, t ′
1
) and (t ′

1
, t).

Similarly, if a special compaction is performed on S ′′, we subdivide
the edge between nodes t ′′ and t by adding a new node t ′′

1
and

including the two edges (t ′′, t ′′
1
) and (t ′′

1
, t).

Recall that we set the upper bounds N on the input size used

by the sketches as N0 = ⌈28 · ˆk⌉ and Ni = N 2

i−1
for 0 ≤ i ≤ ℓ ≤

⌈log
2

log
2
(εn)⌉ (as N0 ≥ ˆk ≥ 1/ε). We may assume that ℓ > 0,

otherwise the whole input can be stored in space O( ˆk) = O(ε−1 ·√
log(1/δ )). Let ki and Bi denote the parameters k and B set via

Equation (15) with N = Ni , i.e., ki = k(Ni ) and Bi = B(Ni ).

We say that an (internal) node t in treeT is an i-node for 0 ≤ i ≤ ℓ
if the sketch St represented by t satisfies St .N = Ni , i.e., it uses the

parameters ki and Bi . Note that this means that if parameter N is

updated from Ni−1 to Ni during the merge operation represented

by t , then t is considered an i-node. Moreover, we say that node t is

15



1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference’17, July 2017, Washington, DC, USA Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

a topmost i-node if the parent of t is a j-node for some j > i or t is
the root ofT . Note that the subtrees of topmost i-nodes are disjoint
and that topmost i-nodes for i < ℓ represent special compactions

and have just one child.

To simplify the presentation of the analysis, we assume that a

special compaction is also done at the root ofT (which is the single

topmost ℓ-node). The actual algorithm does not perform such a

special compaction at the root of T , and our analysis in fact applies

even in the absence of such a special compaction (namely, we would

consider a special case of i = ℓ in the proof of Lemma 19 separately).

As in Sections 3 and 4, we consider a fixed item y and analyze

the error of the estimated rank of y. Recall that R(y) denotes the
rank of y in the input summarized by the sketch and that R̂(y) is
the estimated rank of y obtained from the final sketch S . Our aim
is to show that | Err(y)| = |R̂(y) − R(y)| ≤ ε R(y) with probability

at least 1 − δ .

C.3 Analysis of a Single Level
For the duration of this section, we consider a single level h. We

start by showing that the binary representation of the state C at

level h never has more than ⌈log
2
(S .N /S .k)⌉ bits, or equivalently,

C ≤ S .N /S .k . Consequently, C (viewed as a bitstring) never has

⌈log
2
(S .N /S .k)⌉ trailing ones just before a compaction operation

(as after the operation, it would have more than ⌈log
2
(S .N /S .k)⌉

bits).

Observation 17. Consider a node t of tree T and sketch S rep-
resented by t . Let C be the state of the level-h buffer of S . Then
C ≤ S .N /S .k .

Proof. Let r be the number of items removed from the level-h
buffer of S during compactions represented by nodes in the subtree

of t . We show that C ≤ r/S .k by induction. This implies C ≤

S .N /S .k as r ≤ S .n ≤ S .N .

The base case of a leaf node follows as C = 0 and r = 0. Let

S be the sketch represented by an internal node and let S ′ and
S ′′ be the sketches represented by its children. Let C ′

and C ′′
be

the states of the level-h buffers of S ′ and S ′′, and let r ′ and r ′′

be the number of items removed from the level-h buffer during

compactions represented by nodes in the subtrees of S ′ and S ′′,
respectively. By the induction hypothesis, we haveC ′ ≤ r ′/S ′.k and

C ′′ ≤ r ′′/S ′′.k . Note that r equals r ′ + r ′′ plus the number of items

removed from the level-h buffer during a compaction represented

by t if there is one. Letb ∈ {0, 1} be the indicator variable withb = 1

iff there is a level-h compaction represented by t . Observe that C =
(C ′

ORC ′′) + b and if b = 1, then the compaction removes at least

S .k items from the level-h buffer. We thus have r ≥ r ′ + r ′′ +b · S .k
and using this, we obtain

C = (C ′
ORC ′′) + b ≤ C ′ +C ′′ + b

≤
r ′

S ′.k
+

r ′′

S ′′.k
+ b

≤
r ′

S .k
+

r ′′

S .k
+
b · S .k

S .k

≤
r

S .k
,

where the penultimate inequality uses S .k ≤ min(S ′.k, S ′′.k). □

Recall that the second half of a buffer of sizeBi has ⌈log
2
(Ni/ki )+

1⌉ sections of size ki (see Equation (15)). The definition of the

compaction operation and Observation 17 imply that section

⌈log
2
(Ni/ki ) + 1⌉ (i.e., the leftmost section of the second half of

the buffer) is involved only in a special compaction (done when

updating Ni to Ni+1 = N 2

i ).

Next, we prove an analogue of Fact 4, which for the streaming

setting (where we can more easily impose a total ordering on the

ocurrence of events) states that between every two compaction

operations involving exactly j sections of a buffer, there is at least
one compaction of section j + 1. Recall from Section C.1 that we

say a compaction of sketch S at level h involves exactly j sections
if parameter s of function PerformCompaction in Algorithm 4

equals B− j ·k+1. In words, a compaction involves exactly j sections
if j is the number of compacted sections amongst those that contain

just the lowest-ranked S .B items in the level-h buffer of S (higher-

ranked items in the buffer are compacted regardless of the state

variable S .C). For mergeability, we conceptually replace the notion

of “how the summary evolves over time” with how the summary

evolves as we traverse any leaf-to-root path in the merge tree T .

Fact 18. Consider the relative-compactor at levelh and any integer
i satisfying 0 ≤ i ≤ ℓ. Suppose there are two compaction operations
represented by i-nodes t and t ′ of treeT that involve exactly j sections
such that node t ′ is a descendant of t . Then there exists a node t̂ <
{t , t ′} on the t-t ′-path inT such that there is a compaction operation
in node t̂ that involves more than j sections.

Proof. Let C and C ′
denote the states of the compaction sched-

ule just before the compaction operations represented by nodes t
and t ′, respectively. Then we can express the binary representations
of C and C ′

respectively as (x, 0, 1j−1) and (x′, 0, 1j−1), where 1j−1

denotes the all-1s vector of length j−1, and x and x′ are respectively
the binary representations of two numbers y and z with y < z; this
relies on using the bitwise OR operation when combining the states

during a merge operation (cf. Fact 15). Note that after the com-

paction operation in node t , the state of the compaction schedule is

(x, 1, 0j−1), so the j-th bit from the right equals 1. Observe that this

bit switches from 1 to 0 only after a compaction that involves more

than j sections; this again relies on Fact 15.Since the j-th bit from

the right is 0 in node t ′, there must be a node t̂ on the t-t ′-path in

T such that there is a compaction operation in node t̂ that involves
more than j sections. □

As in Section 3, the key part of the analysis is bounding the

number of compaction operations that introduce some error for

the fixed item y; recall that we call such compactions important.

Also, recall that we call items x ≤ y important and that for h > 0,

Rh (y) denotes the total number of important items promoted to

level h during compaction operations at level h − 1 (represented

by any node in T ). For level 0, we have R0(y) = R(y). Note that a
compaction is important (i.e., affects the error for y) if and only if

it involves an odd number of important items, by Observation 3.

We start by bounding the number of important scheduled level-h
compactions represented by i-nodes for a fixed i . Then we use this

lemma to show a bound for multiple i’s.

Lemma 19. Consider level h and 0 ≤ i ≤ ℓ. Letmi
h be the number

of important scheduled compaction operations at level h represented
16
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by i-nodes. It holds thatmi
h ≤ R

i
h (y)/ki , where R

i
h (y) is the number

of important items that are removed from level h during a compaction
represented by an i-node, including those removed by special com-
pactions at level h represented by topmost i-nodes.

Proof. For simplicity, when we refer to a buffer or a compaction

operation we mean the one at level h. The proof is by an extension

of the charging argument in Lemma 5. We aim to charge each

important compaction (except for special compactions) represented

by an i-node to ki important items that are removed during a

compaction represented by an i-node (possibly a special compaction

represented by a topmost i-node). Moreover, we will show that each

important item is charged at most once, which will imply that there

are at most R

i
h (y)/ki important scheduled compactions represented

by i-nodes.
Call an i-node t heavy if both children of t have an important

compaction represented by an i-node in their subtrees. This implies

that both children of t are i-nodes and that both buffers (of the

sketches) represented by t ’s children have at least Bi/2 important

items.

Consider an i-node t representing an important scheduled com-

paction that involves exactly j buffer sections. Note here that j ≤
⌈log

2
(Ni/ki )⌉ by Observation 17.

Let t ′ be the i-node on the path from t to the root in T such that

either t ′ is heavy and t is in the subtree of the right child of t ′, or t ′

represents a compaction operation involving more than j sections;
if there are more such nodes, t ′ is the lowest such node (i.e., the

closest to t ). Note that t ′ is well-defined, since the topmost i-node
on the path from t to the root represents a special compaction that

involves all ⌈log
2
(Ni/ki )⌉+1 buffer sections (recall that we perform

a special compaction only if the level-h buffer has more than Bi/2

items, which is satisfied for the topmost i-node above t as there is
a scheduled compaction represented by an i-node in its subtree).

Observe that after the compaction represented by t , section j + 1

contains important items only and this property does not change

until we compact section j + 1. We consider the two cases in the

definition of t ′ separately to define a charging scheme:

Case A: t ′ is heavy and t is in the subtree of the right child of t ′.
We claim that there are at least ( 3

2
Bi − j · ki ) important items in

the buffer just before the compaction operation represented by t ′.
Indeed, as t ′ is heavy, the sketch represented by the left child of t ′

has at least Bi/2 important items at the buffer and since after the

compaction represented by t , section j + 1 contains important items

only, the sketch represented by the right child of t ′ has at least
Bi − j · ki important items; here we use that there is no compaction

operation that involves section j + 1 represented by a node on

the path between t and t ′. We charge the important compaction

represented by t to the ki important items at indexes in the interval

[( 3

2
Bi − (j + 1) · ki + 1), ( 3

2
Bi − j · ki )] that are all removed during

the compaction represented by t ′; we call this interval extra section
j + 1.

9

9
The “extra section” terminology references the fact that

3

2
Bi −(j+1) ·ki +1 ≥ Bi +1,

so it falls outside of our usual section numbering scheme. As buffers of i-nodes store
at most Bi items at the start and end of a merge operation, any items other than the

smallest Bi items in the buffer are thought of as “extra” items. All extra items in a

buffer are automatically involved in a compaction at the time of the merge operation.

Case B: Otherwise, t ′ represents a compaction operation involving

more than j sections. Then we charge the important compaction

represented by t to the ki important items removed from section

j + 1 during the compaction represented by t ′.

Having defined the charging scheme, it remains to observe that

each of R

i
h (y) important items is charged at most once. The argu-

ment relies on the following claim:

Claim 20. Let t1 and t2 be two i-nodes with t1 , t2 in the subtree
of an i-node t ′ such that t ′ < {t1, t2} and for both t1 and t2 there
is an important scheduled compaction involving exactly j sections
represented by the respective node. Then, the important compaction of
at least one of t1 and t2 is charged to important items either removed
by a compaction represented by a node strictly below t ′ (i.e., in the
subtree of t ′ and different from t ′), or removed from an extra section
of t ′.

Proof. If t2 lies on the t1-t
′
-path, then Fact 18 implies that the

compaction represented by t1 is charged to items removed by a

compaction represented by a node strictly below t ′ as there is a node
t̄ on the t1-t2-path representing a compaction that involves section

j + 1; a symmetric argument applies if t1 lies on the t2-t
′
-path.

Otherwise, let t̂ be the lowest common node of the t1-t
′
-path and

of the t2-t
′
-path; possibly t̂ = t ′. Note that t̂ < {t1, t2} since t1 , t2.

W.l.o.g., suppose that t1 is in the subtree of the left child of t̂ and t2
is in the subtree of the right child of t̂ . Since there are important

compactions in both t1 and t2, node t̂ is heavy. Hence, as t2 is in

the right subtree of t̂ , the compaction represented by t2 is charged

to important items either removed from an extra section of t̂ , or
removed from some section of a node below t̂ on the t2-t̂-path. □

To show the full claim that each important item is charged at

most once for the fixed levelh, consider any important item x that is

removed from the level-h buffer during some compaction operation

represented by an i-node t . We have two cases that correspond to

the two cases of the charging scheme described above:

Case I: x is not in an extra section of the buffer just before it is

removed from the buffer (i.e., x is at index at most Bi in that buffer)

. Let j + 1 be the index of the section that contains x just before it is

removed (thus, the compaction involves at least j + 1 sections); note

that j ≥ 0 as items in section 1 are not charged. Item x may only be

charged by some number of important compactions represented by

nodes in the subtree of t that involve exactly j sections according
to Case B of the above charging scheme. Claim 20 then implies that

x is charged at most once.

Case II: Otherwise, for item x to be charged to, x must be removed

from an extra section during a compaction represented by a heavy

node t∗. Let j + 1 be the index of this extra section. Then x may be

charged by some number of important compactions that involve

exactly j sections and are represented by nodes in the subtree of

the right child of t∗ (according to Case A of the charging scheme).

Using Claim 20 (with t ′ in the statement of Claim 20 equal to the

right child of t∗) again implies that x is charged at most once. □

The following lemma combines the bounds for different i’s and
takes important special compactions into account. We first give a

few definitions. We say that a compaction involves important items
iff it removes at least one important item from the buffer. Recall
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that we only consider a compaction to be important if it affects an

odd number of important items, so these compactions involving

important items are a superset of important compactions. LetQh be

the set of nodes t such that (i) t represents a level-h compaction that

involves important items, and (ii) there is no node on the t-to-root
path (except for t ) that represents a level-h compaction involving

important items. Intuitively, Qh captures “maximal” nodes that

represent a level-h compaction removing one or more important

items from levelh. Observe then that an important item that remains

in the level-h buffer represented by a node t ∈ Qh (after performing

the compaction operation represented by t ) is never removed from

the level-h buffer, by the definition of Qh . For 0 ≤ i ≤ ℓ, let Qi
h be

the set of i-nodes in Qh .

Finally, for some 0 ≤ a ≤ ℓ, let R
≥a
h (y) be the number of impor-

tant items that are either removed from level h during a compaction

represented by an i-node for i ≥ a, or remain at the level-h buffer

(of the sketch) represented by a node t ∈ Qi
h for i ≥ a (after the

compaction operation represented by t is done).

Lemma 21. Consider levelh. For 0 ≤ i ≤ ℓ, letmi
h be the number of

important compaction operations (both scheduled and special) at level
h represented by i-nodes in the merge tree T . Then for any 0 ≤ a ≤ ℓ,
it holds that

ℓ∑
i=a

mi
h · ki ≤ 2 R

≥a
h (y) . (16)

Proof. By Lemma 19, we have a bound on the number of im-

portant scheduled compactions, namely,mi
h · ki ≤ R

i
h (y) for any

a ≤ i ≤ ℓ. Observe that
∑ℓ
i=a R

i
h (y) is the number of important

items removed by compactions represented by i-nodes for a ≤ i ≤ ℓ

(including special compactions) and that

∑ℓ
i=a R

i
h (y) ≤ R

≥a
h (y), so

we get

ℓ∑
i=a

mi
h · ki ≤ R

≥a
h (y) . (17)

We now turn our attention to special compactions. Let m̂i
h be the

number of important special compactions represented by topmost

i-nodes; note thatmi
h =m

i
h +m̂

i
h . Observe that m̂

i
h ·Bi/2 ≤ R

≥a
h (y)

since the level-h buffer represented by a topmost i-node t contains
at least Bi/2 important items if t represents an important special

compaction, since these sets of important items are disjoint, and

since these important items are either removed from the level-h
buffer by a compaction represented by an i ′-node for i ′ > i ≥ a,

or remain at the level-h buffer represented by a node t ′ ∈ Qi′
h for

some i ′ ≥ i (possibly t ′ = t ).
We thus have

ℓ∑
i=a

m̂i
h ≤

ℓ∑
i=a

2 R
≥a
h (y)

Bi
≤

R
≥a
h (y)

k0

, (18)

where we use that
10 Bi ≳

(√
2

)i
· B0 and B0 ≥ 8 · k0; the latter

holds if N0 ≥ 2
3 · k0, which is implied by N0 ≥ 2

8 · ˆk .

10
This inequality holds up to rounding issues, however, as B0 ≥ 2

5
, the error intro-

duced by rounding is small enough to ensure the validity of the inequalities.

Since k0 ≥ k1 ≥ · · · ≥ kℓ , inequality (18) implies

ℓ∑
i=a

m̂i
h · ki ≤ R

≥a
h (y) . (19)

Combining (17) and (19) and usingmi
h =m

i
h +m̂

i
h implies (16). □

As ki ≥ kℓ for any i ≤ ℓ and R
≥0

h (y) ≤ Rh (y), Lemma 21 with

a = 0 has a simple corollary.

Corollary 2. Consider level h and letmh =
∑ℓ
i=0

mi
h be the total

number of important compaction operations at levelh across all merge
operations captured by the merge tree T . Thenmh ≤ 2 Rh (y)/kℓ .

C.4 Analysis of the Full Sketch with an
Additional Factor of log log(n)

As a warmup, in this section, we complete the proof of full merge-

ability, but with an additional factor of log
2

log
2
(εn) appearing in

the final space bound relative to our result in the streaming setting

(Theorem 13). The analysis in this section is less delicate than our

analysis that avoids this log
2

log
2
(εn) factor, thereby establishing

Theorem 1. We nevertheless do not assume any advance knowledge

about the final input sizen. (We remark that special compactions are

actually not needed to achieve the result of this section, however,

the analysis needs some adjustments.)

We first set the value of parameter
ˆk . Namely, given the desired

accuracy 0 < ε ≤ 1 and desired upper bound 0 < δ ≤ 0.5 on failure

probability, we let

ˆk =
8

ε
·

√
ln

1

δ
. (20)

We also modify the definitions of ki and Bi for i ≥ 0 compared to

Equation (15), as follows:

ki = 2 ·


max(i, 1) · ˆk√

log
2
(Ni/ ˆk)

 and Bi = 2 · ki ·

⌈
log

2

Ni
ki

⌉
. (21)

In particular, relative to Equation (15), note the extra factor of i in
the definition of ki . Including this extra factor considerably simpli-

fies the analysis, but it is responsible for the additional log
2

log
2
(εn)

term in the space bound we obtain in this section.

Observe that for i ≤ ℓ, it holds that ki ≥ kℓ , since
√

log
2
(Ni/ ˆk)

grows faster than i . We assume that ε satisfies ε ≤ 1/ 4

√
2 log

2
(n);

we remark that this is a very weak restriction put on ε as for all

practical values of n ≤ 2
128

we have
4

√
2 log

2
(n) ≤ 4, in which case

the assumption becomes ε ≤ 1/4.

We need two lower bounds on the products of ki and Bi for
0 ≤ i ≤ ℓ. First, note that

kℓ · B0 ≥ kℓ · 2 · k0 · log
2
(N0/ ˆk)

≥
8 · ℓ · ˆk2√
log

2
(Nℓ/

ˆk)

≥ 2
9 · ℓ ·

1

ε2
· ln

1

δ
·

1√
log

2
(Nℓ/

ˆk)

≥ 2
9 · ℓ · ln

1

δ
, (22)
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where we apply the assumption ε ≤ 1/ 4

√
2 log

2
(n) to get

ε−2/

√
log

2
(Nℓ/

ˆk) ≥ ε−2/

√
log

2
(n2) ≥ 1,

where the first inequality uses Nℓ/
ˆk ≤ n2

(because

√
Nℓ = Nℓ−1

<

n).
Second, using a similar calculation as in Claim 6, we show a

lower bound on ki · Bi .

Claim 22. Parameters ki and Bi set according to (21) and based
on ˆk as in (20) satisfy

ki · Bi ≥ 2
6 ·

i2

ε2
· ln

1

δ
. (23)

Proof. We first need to relate log
2
(Ni/ki ) (used to define Bi )

and log
2
(Ni/ ˆk) (that appears in the definition of ki ). Since ki ≤ 2 · ˆk

(this inequality is tightest for k0), it holds that

log
2
(Ni/ki ) ≥ log

2
(Ni/ ˆk) − 1 ≥ log

2
(Ni/ ˆk)/2,

where we use that Ni ≥ N0 ≥ 4 · ˆk , so log
2
(Ni/ ˆk) ≥ 2. Using this,

we bound ki · Bi as follows:

ki · Bi = 2 · k2

i ·

⌈
log

2

Ni
ki

⌉
≥ 2 · 2

8 ·
i2

ε2
·

ln
1

δ

log
2
(Ni/ ˆk)

·
log

2
(Ni/ ˆk)

2

= 2
8 ·

i2

ε2
· ln

1

δ
.

□

For any 0 ≤ i ≤ ℓ, we define Hi (y) to be the minimal h for

which 2
−h+1

R(y) ≤ Bi/2. As y is fixed, we use just Hi for brevity.

For h = Hi − 1 (assuming Hi > 0), we have in particular that

2
2−Hi

R(y) ≥ Bi/2, or equivalently

2
Hi ≤ 2

3 · R(y)/Bi . (24)

As increasing i by one increases Bi , we have H0 ≥ H1 ≥ · · · ≥ Hℓ .

We show below that no important item (i.e., one smaller than or

equal to y) can ever reach level H0 + 1.

Lemma 23. Assuming H0 > 0, with probability at least 1 − δ it
holds that Rh (y) ≤ 2

−h+1
R(y) for any h ≤ H0.

Proof. The proof is similar to that of Lemma 9, except that we

need to deal with parameters k and B changing over time. We show

by induction on 0 ≤ h ≤ H0 that Rh (y) ≤ 2
−h+1

R(y) with proba-

bility at least 1 − δ · 2
h−H0−1

, conditioned on Rh′(y) ≤ 2
−h′+1

R(y)
for any h′ < h. The base case holds by R0(y) = R(y).

Consider 0 < h ≤ H0, and recall thatmh′ denotes the number

of important compactions at level h′ over all merge operations

represented in the merge tree T . As in the proof of Lemma 9,

Pr[Rh (y) > 2
−h+1

R(y)] ≤ Pr[Zh > 2
−h

R(y)],

where Zh =
∑h−1

h′=0
2
−h+h′

· Binomial(mh′) is a zero-mean sub-

Gaussian random variable. To bound the variance of Zh , first note
that for any h′ < h, we have that

mh′ ≤
2 Rh′(y)

kℓ
≤ ℓ ·

2
−h′+2

R(y)

kℓ
,

using Corollary 2 for each i ∈ [1, ℓ], the fact that ki ≥ kℓ , and the

assumption that Rh′(y) ≤ 2
−h′+1

R(y).
As Var[Binomial(n)] = n, the variance of Zh is

Var[Zh ] ≤
h−1∑
h′=0

2
−2h+2h′

·mh′

≤

h−1∑
h′=0

2
−2h+2h′

·
2
−h′+2

R(y)

kℓ

=

h−1∑
h′=0

2
−2h+h′+2

R(y)

kℓ

≤
2
−h+2 · R(y)

kℓ
.

To bound Pr[Zh > 2
−h

R(y)], we apply the Chernoff tail bound

for sub-Gaussian variables (Fact 8) to get

Pr[Zh > 2
−h

R(y)] < exp

(
−

2
−2h · R(y)2

2 · (2−h+2 · R(y)/kℓ)

)
= exp

(
−2

−h−3 · R(y) · kℓ

)
= exp

(
−2

−h+H0−6 · 2
3−H0

R(y) · kℓ

)
≤ exp

(
−2

−h+H0−6 · B0 · kℓ

)
≤ exp

(
−2

−h+H0+1 · ln

1

δ

)
= δ2

−h+H
0
+1

≤ δ · 2
−H0+h−1 ,

where the second inequality uses 2
3−H0

R(y) ≥ B0 (by Equation 24),

the third inequality follows from (22), and the last inequality uses

δ ≤ 0.5. Hence, taking the union bound over levels h ≤ H0, with

probability at least 1 − δ it holds that Rh (y) ≤ 2
−h+1

R(y) for any
h ≤ H0. □

Lemma 24. Conditioned on the bounds in Lemma 23 holding, for
any 0 ≤ i ≤ ℓ, there is no important compaction at level h ≥ Hi
represented by an i-node.

Proof. By Lemma 23, RHi (y) ≤ 2
−Hi+1

R(y) ≤ Bi/2, where

the second inequality follows from the definition of Hi . Hence,

no important item is ever compacted during merge operations

represented by i-nodes when the buffer size is Bi . □

We are now ready to state the main theorem of this section.

Theorem 25. Let 0 < δ ≤ 0.5 and 0 < ε ≤ 1 be parameters
satisfying ε ≤ 4/ 4

√
2 log

2
(n). There is a randomized, comparison-

based, one-pass streaming algorithm that, when processing a data
stream consisting of n items, produces a summary S satisfying the
following property. Given S , for anyy ∈ U one can derive an estimate
R̂(y) of R(y) such that

Pr

[
|R̂(y) − R(y)| ≥ ε R(y)

]
< δ ,

where the probability is over the internal randomness of the streaming

algorithm. If ε ≤ O
(
log log(εn) ·

√
log(1/δ )/log(εn)

)
, then the size

19



2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

Conference’17, July 2017, Washington, DC, USA Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

of S is

O

(
1

ε
· log

1.5(εn) ·
√

log(1/δ ) · log log(εn)

)
;

otherwise, storing S takes O
(
log

2(εn)
)
memory words. Moreover, the

summary produced is fully mergeable.

Proof. We condition on the bounds in Lemma 23 that all hold

with probability at least 1 − δ . Let Err
i
h (y) be the error introduced

by compaction operations at level h represented by i-nodes. By
Lemma 24, Err

i
h (y) = 0 for any h ≥ Hi . For h < Hi , by Lemmas 21

and 23,

Var[Err
i
h (y)] ≤

2 Rh (y)

ki
≤

2
−h+2 · R(y)

ki
.

We thus have

Var[Err(y)] =
ℓ∑
i=0

Hi−1∑
h=0

2
2h · Var[Err

i
h (y)]

≤

ℓ∑
i=0

Hi−1∑
h=0

2
h+2 ·

R(y)

ki

≤

ℓ∑
i=0

2
Hi+2 ·

R(y)

ki

≤

ℓ∑
i=0

2
5 ·

R(y)2

ki · Bi

≤
ε2 · R(y)2

4 · ln(1/δ )
·

ℓ∑
i=0

1

i2

≤
ε2 · R(y)2

2 · ln(1/δ )

where the third inequality follows from (24), the penultimate in-

equality uses (23), and the last inequality holds as

∑ℓ
i=0

1

i2
< π 2/6 <

2. Plugging this into the tail bound for sub-Gaussian variables

(Fact 8) we get

Pr [| Err(y)| ≥ ε R(y)] < 2 exp

©«− ε2 · R(y)2

2 ·
ε2 ·R(y)2
2·ln(1/δ )

ª®¬
= 2 exp

(
− ln

1

δ

)
= 2δ .

This concludes the analysis of the failure probability.

Finally, we bound the size of the final sketch S . LetH be the index

of the highest level in S . Observe thatH ≤ ⌈log
2
(n/B0)⌉, since each

item at level h = ⌈log
2
(n/B0)⌉ has weight 2

h
, so there are fewer

than B0 items inserted to level h. Consequently, level H is never

compacted (here, we also use that B0 ≤ B1 ≤ · · · ≤ Bℓ ). Hence, as
B0 ≥ 1/ε , there are O(log(εn)) levels in S . Each level has capacity

Bℓ = 2 · kℓ · ⌈log
2
(Nℓ/kℓ)⌉, so the total memory requirement of S

is

O

(
log(εn) · kℓ · log

Nℓ

kℓ

)
= O

©«log(εn) ·


ℓ · ˆk√

log(Nℓ/
ˆk)

 · log

(
Nℓ

kℓ

)ª®®¬ .

If ε ≤ O

(
log log(εn) ·

√
log

1

δ /log(εn)

)
, or equivalently ℓ · ˆk

≥ Ω

(√
log(Nℓ/

ˆk)

)
, then the space bound is

O
©«log(εn) ·

ℓ · ˆk√
log(Nℓ/

ˆk)

· log

(
Nℓ

kℓ

)ª®®¬
≤ O

(
log(εn) ·

log log(εn)

ε
·

√
log

1

δ
·
√

log(εn)

)
,

where we use that ℓ ≤ log
2

log
2
(εn), log

2
(Nℓ/kℓ) ≤ O(log

2
(Nℓ/

ˆk))

(as kℓ ≥ ˆk/
√

log
2
(Nℓ/

ˆk)) and ˆk ≥ 1/ε .

Otherwise, ℓ · ˆk ≤ O

(√
log(Nℓ/

ˆk)

)
and since Nℓ ≤ n2

, the

size is bounded by O (log(εn) · log(n)) = O
(
log

2(εn)
)
, also using

log(n) ≫ log(1/ε) when 1/ε ≤ ˆk ≤ O

(√
log(Nℓ/

ˆk)

)
. □

C.5 A Tight Analysis of the Full Sketch
In this section, we complete the proof of full mergeability that

matches our result in the streaming setting (Theorem 13). We stress

that we assume no advance knowledge of n, the total size of the

input. We now set the value of parameter
ˆk . Namely, given the

desired accuracy 0 < ε ≤ 1 and desired upper bound 0 < δ ≤ 0.5

on failure probability, we let

ˆk =
1

ε
·

√
ln

1

δ
. (25)

Recall that by (15), ki = 2
5 ·

⌈
ˆk/

√
log

2
(Ni/ ˆk)

⌉
and Bi = 2 · ki ·

⌈log
2
(Ni/ki ) + 1⌉.

We assume that ε satisfies ε ≤ 4/ 4

√
2 log

2
(n); we remark that

this is a very weak restriction put on ε as for all practical values of

n ≤ 2
128

we have
4

√
2 log

2
(n) ≤ 4, in which case the assumption is

implied by ε ≤ 1.

We need two lower bounds on the products of ki and Bi for
0 ≤ i ≤ ℓ. First, note that

kℓ · B0 ≥ kℓ · 2 · k0 · log
2
(N0/ ˆk)

≥
2

11 · ˆk2√
log

2
(Nℓ/

ˆk)

≥ 2
11 ·

1

ε2
· ln

1

δ
·

1√
log

2
(Nℓ/

ˆk)

≥ 2
7 · ln

1

δ
, (26)

where we apply the assumption ε ≤ 4/ 4

√
2 log

2
(n) to get

2
4 · ε−2/

√
log

2
(Nℓ/

ˆk) ≥ 2
4 · ε−2/

√
log

2
(n2) ≥ 1,

where the first inequality uses Nℓ/
ˆk ≤ n2

(because

√
Nℓ = Nℓ−1

<

n).
Second, using a similar calculation as in Claim 6, we show a

lower bound on ki · Bi .
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Claim 26. Parameters ki and Bi set according to (15) and based
on ˆk as in (25) satisfy

ki · Bi ≥ 2
10 ·

1

ε2
· ln

1

δ
. (27)

Proof. We first need to relate log
2
(Ni/ki )+1 (used to define Bi )

and log
2
(Ni/ ˆk) (that appears in the definition of ki ). As ki ≤ 2

5 · ˆk ,

it holds that log
2
(Ni/ki ) + 1 ≥ log

2
(Ni/ ˆk) − 4 ≥ log

2
(Ni/ ˆk)/2,

where we use that Ni ≥ N0 ≥ 2
8 · ˆk , so log

2
(Ni/ ˆk) ≥ 8. Using this,

we bound ki · Bi as follows:

ki · Bi = 2 · k2

i ·

⌈
log

2

Ni
ki
+ 1

⌉
≥ 2 · 2

10 ·
1

ε2
·

ln
1

δ

log
2
(Ni/ ˆk)

·
log

2
(Ni/ ˆk)

2

= 2
10 ·

1

ε2
· ln

1

δ
.

□

For any 0 ≤ i ≤ ℓ, we define Hi (y) be the minimal h for which

2
−h+1

R(y) ≤ Bi/2. As y is fixed, we write Hi rather than Hi (y) for
brevity. In particular, by considering h = Hi − 1 (assuming Hi > 0),

it can be seen that 2
2−Hi

R(y) ≥ Bi/2, or equivalently

2
Hi ≤ 2

3 · R(y)/Bi . (28)

As increasing i by one increases Bi , we have H0 ≥ H1 ≥ · · · ≥ Hℓ .

We show below that no important item (i.e., one smaller than or

equal to y) can ever reach level H0 + 1.

Lemma 27. Assuming H0 > 0, with probability at least 1 − δ it
holds that Rh (y) ≤ 2

−h+1
R(y) for any h ≤ H0.

Proof. The proof is similar to that of Lemma 9, except that we

need to deal with parameters k and B changing over time. We show

by induction on 0 ≤ h ≤ H0 that Rh (y) ≤ 2
−h+1

R(y) with proba-

bility at least 1 − δ · 2
h−H0−1

, conditioned on Rh′(y) ≤ 2
−h′+1

R(y)
for any h′ < h. The base case holds by R0(y) = R(y).

Consider 0 < h ≤ H0, and recall thatmh′ denotes the number

of important compactions at level h′ over all merge operations

represented in the merge tree T . As in the proof of Lemma 9,

Pr[Rh (y) > 2
−h+1

R(y)] ≤ Pr[Zh > 2
−h

R(y)],

where Zh =
∑h−1

h′=0
2
−h+h′

· Binomial(mh′) is a zero-mean sub-

Gaussian random variable. To bound the variance of Zh , first
note that for any h′ < h, we have that mh′ ≤ 2 Rh′(y)/kℓ ≤

2
−h′+2

R(y)/kℓ using Corollary 2 and the assumption that Rh′(y) ≤

2
−h′+1

R(y).
As Var[Binomial(n)] = n, the variance of Zh is

Var[Zh ] ≤
h−1∑
h′=0

2
−2h+2h′

·mh′

≤

h−1∑
h′=0

2
−2h+2h′

·
2
−h′+2

R(y)

kℓ

=

h−1∑
h′=0

2
−2h+h′+2

R(y)

kℓ

≤
2
−h+2 · R(y)

kℓ
.

To bound Pr[Zh > 2
−h

R(y)], we apply the tail bound for sub-

Gaussian variables (Fact 8) to get

Pr[Zh > 2
−h

R(y)] < exp

(
−

2
−2h · R(y)2

2 · (2−h+2 · R(y)/kℓ)

)
= exp

(
−2

−h−3 · R(y) · kℓ

)
= exp

(
−2

−h+H0−6 · 2
3−H0

R(y) · kℓ

)
≤ exp

(
−2

−h+H0−6 · B0 · kℓ

)
≤ exp

(
−2

−h+H0+1 · ln

1

δ

)
= δ2

−h+H
0
+1

≤ δ · 2
−H0+h−1 ,

where the second inequality uses 2
3−H0

R(y) ≥ B0 by (28), the third

inequality follows from (26), and the last inequality uses δ ≤ 0.5.

Hence, taking the union bound over levels h ≤ H0, with probability

at least 1 − δ it holds that Rh (y) ≤ 2
−h+1

R(y) for any h ≤ H0. □

As a corollary, we obtain a bound on the highest level with a

compaction removing important items from the level-h buffer (no

matter whether such a compaction is important or not).

Lemma 28. Conditioned on the bounds in Lemma 27 holding, for
any 0 ≤ i ≤ ℓ, no compaction involving important items occurs at
level Hi or above during any merge procedure represented by any
i-node in the merge tree T .

Proof. By Lemma 27, RHi (y) ≤ 2
−Hi+1

R(y) ≤ Bi/2, where

the second inequality follows from the definition of Hi . Hence,

no important item is ever compacted during merge operations

represented by i-nodes when the buffer size is Bi . □

Next, we prove an initial bound on the estimated rank of y,
namely, that it is at most 2 R(y) with high probability (we do not

need a lower bound). Such an initial bound will in turn be used

within the proof of the final, more refined bound on the variance

of Err(y).

Lemma 29. Conditioned on the bounds in Lemma 27 holding, with
probability at least 1 − δ it holds that R̂(y) ≤ 2 R(y), or equivalently
that Err(y) ≤ R(y).

Proof. Recall that Err(y) is a zero-mean sub-Gaussian random

variable. Lemma 28 implies that there is no important compaction

at level H0 or above, so Errh (y) = 0 for any h ≥ H0. We bound the

variance for levels h < H0 as follows:

Var[Err(y)] =

H0−1∑
h=0

2
2h

Var[Errh (y)]

≤

H0−1∑
h=0

2
2h ·

2 Rh (y)

kℓ

≤

H0−1∑
h=0

2
h+2 ·

R(y)

kℓ
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≤ 2
H0+2 ·

R(y)

kℓ

≤ 2
5 ·

R(y)2

kℓ · B0

≤
R(y)2

2 ln(1/δ )
,

where the first inequality is by Corollary 2, the second inequality

is due to Lemma 27, the penultimate inequality is by (28), and the

last inequality uses (26).

It remains to apply the tail bound for sub-Gaussian variables

(Fact 8) to obtain

Pr [Err(y) > R(y)] < exp

(
−

R(y)2

2 · R(y)2/(2 ln(1/δ ))

)
= exp

(
− ln

1

δ

)
= δ .

□

Consider level h. Recall from Section C.3 that Qh is the set of

nodes t such that (i) t represents a level-h compaction that involves

important items (this compaction may or may not be important),

and (ii) there is no node on the t-to-root path (except for t ) that
represents a level-h compaction involving important items. Note

that an important item that remains in the level-h buffer represented
by a node in Qh (after performing the compaction operation) is

never removed from the level-h buffer, by the definition of Qh . For

0 ≤ i ≤ ℓ, let Qi
h be the set of i-nodes in Qh and let qih = |Qi

h |.

Note that qih = 0 for h ≥ H0 by Lemma 28. Now we observe

that values qih for i = 0, . . . , ℓ give upper bounds on the number of

important items at levelh. This follows from the fact that the level-h
buffer represented by a node in Qi

h contains at most Bi items.

Observation 30. For any h ≥ 0 and 0 ≤ д ≤ ℓ, the level-h
buffers of the sketches represented by nodes in Qi

h for some i ≥ д

contain at most
∑ℓ
i=д q

i
h ·Bi important items in total (after performing

compaction operations represented by these nodes).

Next, we show that values qih can as well be used to lower

bound the number of important items at level h in the final sketch.

Combined with Lemma 29, this will give us a useful bound on∑
h≥0

∑ℓ
i=0

2
h · qih · Bi at the very end of the analysis. Intuitively,

the observation also implies that the qih values cannot be too big,

namely, qih ≤ 2Bℓ/Bi = O(log εn) as there are at most Bℓ items in

the level-h buffer of the final sketch.

In the observation, we also take into account items added to level

h from compactions (at level h − 1 if h > 0) that are not represented
by a node in the subtree of a node inQh . Namely, for h > 0 and any

0 ≤ i ≤ ℓ, let zih be the number of items added to level h during

merge operations represented by i-nodes that are not in the subtree

of a node in Qh . For h = 0, we define zi
0
= 0 for any i .

Observation 31. For any level h, the final sketch represented by
the root ofT contains at least

∑ℓ
i=0

qih · Bi/2 + zih important items at
level h.

Proof. Consider an i-node t ∈ Qi
h and the level-h buffer repre-

sented by t . As the level-h compaction represented by t removes

one or more important items and as t is an i-node, there must be at

least Bi/2 important items in the level-h buffer that remain there af-

ter the compaction operation is done. Furthermore, by condition (ii)

in the definition ofQh , these Bi/2 important items are not removed

from the level-h buffer and the sets of these Bi/2 important items

for two nodes t , t ′ ∈ Qh are disjoint. Finally, the zih items added to

level h during merge operations represented by i-nodes that are
not in the subtree of a node in Qh are disjoint (w.r.t index i) and
distinct from items in the buffers of nodes in Qh , which shows the

claim. □

The following technical lemma bounds the variance on each

level in a somewhat different way than in the streaming setting

(Section 4). The idea is to bound the variance in terms of the qih
values so that we can then use Observation 31. To this end, we first

use Observation 30 to bound Rh (y) in terms of the qih values, using

the following observation: For each important item at level h + 1,

there are roughly two important items removed from level h. Here,
“roughly” refers to the fact that each compaction operation that

promotes b important items removes at most 2b+1 important items

from the level-h buffer. To mitigate the +1 for each compaction

operation, we use factor 3 in the formal proof. Applying this obser-

vation together with Observation 30, we show by an induction on

h that R
≥0

h (y) ≤
∑ℓ
i=0

∑
h′≥h 2 · 3

h′−h · (qih′ · Bi + z
i
h′). Recall that

R
≥a
h (y) is the number of important items that are either removed

from level h during a compaction represented by an i-node for

a ≤ i ≤ ℓ, or remain at the level-h buffer represented by a node

t ∈ Qi
h for a ≤ i ≤ ℓ (after the compaction operation represented

by t is done).
Then we apply Lemma 21 to get our variance bound, which

however brings additional technical difficulties. To overcome them,

we use a careful proof by induction over д ∈ [0, ℓ].

Lemma 32. Conditioned on the bounds in Lemma 27 holding, for
any h ≥ 0, it holds that

Var[Errh (y)] ≤
ℓ∑
i=0

∑
h′≥h

4 · 3
h′−h · (qih′ · Bi + z

i
h′)

ki
. (29)

Proof. As outlined above, we first bound R
≥д
h (y) for any 0 ≤

д ≤ ℓ and in particular, we prove by a “backward” induction on

h = H ,H − 1, . . . , 0 that the following inequality holds for any

0 ≤ д ≤ ℓ:

R
≥д
h (y) ≤

ℓ∑
i=д

( ∑
h′≥h+1

(
2 · 3

h′−h · (qih′ · Bi + z
i
h′)

)
+ 2 · qih · Bi

)
.

(30)

For any h ≥ H0, by Lemma 28 we have that qih = 0 and that no

important item is removed from level h, thus R
≥д
h (y) = 0 for any д.

Consequently, inequalities (30) holds trivially for h ≥ H0 and any

д, which establishes the base case.

Consider h < H0 and suppose that (30) holds for h + 1, i.e., we

have that

R
≥д
h+1

(y) ≤
ℓ∑

i=д

( ∑
h′≥h+2

(
2 · 3

h′−h−1 · (qih′ · Bi + z
i
h′)

)
+ 2 · qih+1

· Bi

)
.

(31)

To show (30), we first bound the number of important items

removed from level h in terms of R
≥д
h+1

(y). For brevity, let z
≥д
h+1
=∑ℓ

i=д z
i
h+1

. Note that there are at most R
≥д
h+1

(y) + z
≥д
h+1

important
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items added to level h + 1 during compactions represented by i-
nodes for some i ∈ [д, ℓ], since each such important item either

gets removed from level h + 1 or remains in the level-(h + 1) buffer

represented by a node in Qi
h+1

for some i ∈ [д, ℓ] or is added to

level h + 1 during a merge operation represented by an i-node
t for i ∈ [д, ℓ] such that t is not in the subtree of a node in Qh .

Further, observe that each compaction that adds b important items

to level h+1 removes 2b+1 items from from the level-h buffer if the

compaction is important, and if the compaction is not important,

then it removes 2b items from the level-h buffer. The number of

important compactions represented by i-nodes for some i ∈ [д, ℓ] is

at most R
≥д
h (y)/5 by Lemma 21 with a = д (where we use ki ≥ 10

for any i). Thus the number of important items removed from level

h during compactions represented by i-nodes for i ∈ [д, ℓ] is upper

bounded by 2 R
≥д
h+1

(y) + 2z
≥д
h+1
+ (R

≥д
h (y)/5).

By Observation 30, at most

∑ℓ
i=д q

i
h · Bi important items remain

at the level-h buffers of the sketches represented by nodes in Qi
h

for some i ≥ д. We thus have that

R
≥д
h (y) ≤ 2 R

≥д
h+1

(y) + 2z
≥д
h+1
+ (R

≥д
h (y)/5) +

ℓ∑
i=д

qih · Bi .

After subtracting R
≥д
h (y)/5 from both sides of this inequality, and

then multiplying both sides of the inequality by 5/4, we get

R
≥д
h (y) ≤

5

2

· R
≥д
h+1

(y) +
5

2

· z
≥д
h+1
+

5

4

·

ℓ∑
i=д

qih · Bi

≤
5

2

·

(
ℓ∑

i=д

( ∑
h′≥h+2

(
2 · 3

h′−h−1 · (qih′ · Bi + z
i
h′)

)
+ 2 · qih+1

· Bi

))
+

5

2

· z
≥д
h+1
+

5

4

·

ℓ∑
i=д

qih · Bi

≤

ℓ∑
i=д

( ∑
h′≥h+1

(
2 · 3

h′−h · (qih′ · Bi + z
i
h′)

)
+ 2 · qih · Bi

)
,

where the second inequality uses the induction hypothesis (31).

Thus, (30) holds.

Using zih ≥ 0, we simplify (30) and get

R
≥д
h (y) ≤

ℓ∑
i=д

∑
h′≥h

(
2 · 3

h′−h · (qih′ · Bi + z
i
h′)

)
. (32)

Finally, we bound the variance. Recall from Section C.3 that

mi
h is the number of important compaction operations at level h

represented by i-nodes. Note that Var[Errh (y)] =
∑ℓ
i=0

mi
h . We

prove by a “backward” induction on д = ℓ, ℓ − 1, . . . , 0 that the

following inequality holds for any h ≥ 0:

ℓ∑
i=д

mi
h ≤

ℓ∑
i=д

∑
h′≥h

4 · 3
h′−h · (qih′ · Bi + z

i
h′)

ki
. (33)

Note that (33) for д = 0 gives (29) and that we may suppose that

h < H0 as

∑ℓ
i=дm

i
h = 0 for h ≥ H0 and any д by Lemma 28.

Consider 0 ≤ д ≤ ℓ and suppose that for any д′ > д (in the case

д < ℓ), we have that

ℓ∑
i=д′

mi
h ≤

ℓ∑
i=д′

∑
h′≥h

4 · 3
h′−h · (qih′ · Bi + z

i
h′)

ki
. (34)

To show (33), we use Lemma 21 with a = д to get

∑ℓ
i=дm

i
h · ki ≤

2 R
≥д
h (y). We divide this inequality by kд and use (32) to get

ℓ∑
i=д

ki
kд

·mi
h ≤

ℓ∑
i=д

∑
h′≥h

4 · 3
h′−h · (qih′ · Bi + z

i
h′)

kд
.

For everyд′ > д, we add inequality (34) (that holds by the induction
hypothesis) multiplied by (kд′−1 − kд′)/kд (which is non-negative

as kд′−1 ≥ kд′ ) to obtain

ℓ∑
i=д

©« kikд +
i∑

д′=д+1

kд′−1 − kд′

kд

ª®¬ ·mi
h

≤

ℓ∑
i=д

©« ki
kд · ki

+

i∑
д′=д+1

kд′−1 − kд′

kд · ki

ª®¬
·
∑
h′≥h

4 · 3
hj−h · (qih′ · Bi + z

i
h′) . (35)

Note that the sum of fractions of ki ’s on the RHS of (35) equals

1/ki for any i , and similarly the sum of fractions of ki ’s on the

LHS of (35) equals 1 for any i , so the LHS equals

∑ℓ
i=дm

i
h . This

shows (33). □

Finally, we have all ingredients needed to show that we can

match the streaming result of Theorem 13 even when creating the

sketch using an arbitrary sequence of merge operations without

any advance knowledge about the total size of the input. That is,

we now prove the full mergeability claim of Theorem 1, which we

restate for convenience.

Theorem 1. Let 0 < δ ≤ 0.5 and 0 < ε ≤ 1 be parameters
satisfying ε ≤ 4/ 4

√
2 log

2
(n). There is a randomized, comparison-

based, one-pass streaming algorithm that, when processing a data
stream consisting of n items, produces a summary S satisfying the
following property. Given S , for anyy ∈ U one can derive an estimate
R̂(y) of R(y) such that

Pr

[
|R̂(y) − R(y)| ≥ ε R(y)

]
< δ ,

where the probability is over the internal randomness of the streaming

algorithm. If ε ≤ 4 ·

√
ln

1

δ /log
2
(εn), then the size of S is

O
©«ε−1 · log

1.5(εn) ·

√
log

(
1

δ

)ª®¬ ;

otherwise, storing S takes O
(
log

2(εn)
)
memory words. Moreover, the

summary produced is fully mergeable.

Proof. We condition on the bounds from Lemmas 27 and 29,

which together hold with probability at least 1 − 2δ . We bound the

variance using Lemma 32 as follows:

Var[Err(y)] =
∑
h≥0

2
2h · Var[Errh (y)]
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≤
∑
h≥0

2
2h ·

ℓ∑
i=0

∑
h′≥h

4 · 3
h′−h · (qih′ · Bi + z

i
h′)

ki

=

ℓ∑
i=0

∑
h′≥0

h′∑
h=0

2
2h

4 · 3
h′−h · (qih′ · Bi + z

i
h′)

ki

≤

ℓ∑
i=0

∑
h′≥0

2
2h′+4 · (qih′ · Bi + z

i
h′)

ki

≤

ℓ∑
i=0

Hi∑
h′=0

2
h′+7 · (qih′ · Bi + z

i
h′) · R(y)

ki · Bi

≤
ε2 · R(y)

8 ln(1/δ )
·

ℓ∑
i=0

Hi∑
h′=0

2
h′

· (qih′ · Bi + z
i
h′) ,

where the second inequality follows from

h′∑
h=0

2
2h · 4 · 3

h′−h = 4 · 3
h′

·

h′∑
h=0

(
4

3

)h
≤ 4 · 3

h′

· 3 ·

(
4

3

)h′+1

= 4
h′+2 = 2

2h′+4 ,

the third inequality uses qih′ = 0 and zih′ = 0 for h′ > Hi by

Lemma 28 and 2
Hi ≤ 2

3 · R(y)/Bi by (28), and the fourth inequality

follows from the bound on ki · Bi in (27).

By Observation 31, there are at least

∑ℓ
i=0

qih · Bi/2 + zih impor-

tant items stored in the level-h buffer of the final sketch, thus the

estimated rank of y satisfies R̂(y) ≥
∑H0

h=0

∑ℓ
i=0

2
h · qih · Bi/2 + zih .

On the other hand, conditioned on Lemma 29, the estimated rank

of y is at most 2 R(y), which gives us

ℓ∑
i=0

Hi∑
h′=0

2
h′

· (qih′ · Bi + z
i
h′) ≤ 2R̂(y) ≤ 4 R(y) .

Using this inequality, we obtain our final variance bound:

Var[Err(y)] ≤
ε2 · R(y)2

2 ln(1/δ )
.

Plugging this into the tail bound for sub-Gaussian variables (Fact 8)

we finally conclude that

Pr [| Err(y)| > ε R(y)] < 2 exp

(
−

ε2 · R(y)2

2 · ε2 · R(y)2/(2 ln(1/δ ))

)
= 2 exp

(
− ln

1

δ

)
= 2δ .

This completes the calculation of the failure probability.

Finally, we bound the size of the final sketch S . LetH be the index

of the highest level in S . Observe thatH ≤ ⌈log
2
(n/B0)⌉, since each

item at level h = ⌈log
2
(n/B0)⌉ has weight 2

h
, so there are fewer

than B0 items inserted to level h. Consequently, level H is never

compacted (here, we also use that B0 ≤ B1 ≤ · · · ≤ Bℓ ). Hence, as
B0 ≥ 1/ε , there are O(log(εn)) levels in S . Each level has capacity

Bℓ = 2 · kℓ · ⌈log
2
(Nℓ/kℓ) + 1⌉, so the total memory requirement

of S is

O
(
log(εn) · kℓ · log

(
Nℓ

kℓ

))
= O

(
log(εn) ·

⌈
ˆk√

log(Nℓ/
ˆk )

⌉
· log

(
Nℓ

kℓ

))
.

If ε ≤ 4 ·

√
ln

1

δ /log
2
(εn), or equivalently ˆk ≥ Ω

(√
log(Nℓ/

ˆk)

)
,

then the space bound is

O
©«log(εn) ·

ˆk√
log(Nℓ/

ˆk)

· log

(
Nℓ

kℓ

)ª®®¬
≤ O

(
log(εn) ·

1

ε
·

√
log

1

δ
·
√

log(εn)

)
,

where we use that log
2
(Nℓ/kℓ) ≤ O(log(Nℓ/

ˆk)) (as kℓ ≥

ˆk/
√

log
2
(Nℓ/

ˆk)) and ˆk ≥ 1/ε .

Otherwise,
ˆk ≤ O

(√
log(Nℓ/

ˆk)

)
and since Nℓ ≤ n2

, the size is

bounded byO (log(εn) · log(n)) = O
(
log

2(εn)
)
, also using log(n) ≫

log(1/ε) when 1/ε ≤ ˆk ≤ O

(√
log(Nℓ/

ˆk)

)
. □

D ANALYSIS WITH EXTREMELY SMALL
FAILURE PROBABILITY

In this section, we provide a somewhat different analysis of our al-

gorithm, which yields an improved space bound for extremely small

values of δ , at the cost of a worse dependency on n. In particular,

we show a space upper bound ofO(ε−1 · log
2(εn) · log log(1/δ )) for

any δ > 0. For simplicity, we only give the subsequent analysis in

the streaming setting, although we conjecture that an appropriately

adjusted analysis in Appendix C would yield the same bound under

arbitrary merge operations. We further assume foreknowledge of (a

polynomial bound on) n, the stream length; this assumption can be

removed in a similar fashion to Section 5. As a byproduct, we show

at the end of this appendix that this result implies a deterministic

space upper bound of O(ε−1 · log
3(εn)) for answering rank queries

with multiplicative error ε , thus matching the state-of-the-art result

of Zhang and Wang [22].

To this end, we use Algorithm 2 with a different setting of k ,
namely,

k = 2
4 ·

⌈
1

ε
· log

2
ln

1

δ

⌉
. (36)

We remark that, unlike in Section 4, the value of k does not depend

on n directly (only possibly indirectly if δ or ε is set based on n).
Note that the analysis of a single relative-compactor in Section 3

still applies and in particular, there are at most Rh (y)/k important

steps at each level h by Lemma 5.

We enhance the analysis for a fixed item y of Section 4. The

crucial trick to improve the dependency on δ from

√
ln(1/δ ) to

log
2

ln(1/δ ) is to analyze the sketch using Chernoff bounds only

below a certain level H ′(y) and provide deterministic bounds for

levels H ′(y) ≤ h < H (y). This idea was first used by Karnin et

al. [12] to get their optimal result for the additive error guarantee.

We define

H ′(y) = max

(
0,H (y) − ⌈log

2
ln(1/δ )⌉

)
;

here H (y) is defined as in Section 4 as the minimal h for which

2
2−h

R(y) ≤ B/2. Next, we provide modified rank bounds.
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Lemma 33. Assuming H (y) > 0, for any h < H (y) it holds that
Rh (y) ≤ 2

−h+2
R(y) with probability at least 1 − δ .

Proof. We first show by induction on 0 ≤ h < H ′(y) that

Rh (y) ≤ 2
−h+1

R(y) with probability at least 1 − δ · 2
h−H ′(y)

, condi-

tioned on Rℓ(y) ≤ 2
−ℓ+1

R(y) for any ℓ < h. This part of the proof
is similar to that of Lemma 9. The base case holds by R0(y) = R(y).

Consider 0 < h < H ′(y). As in Lemma 9,

Pr[Rh (y) > 2
−h+1

R(y)] ≤ Pr[Zh > 2
−h

R(y)],

where Zh is a zero-mean sub-Gaussian variable with variance at

most Var[Zh ] ≤ 2
−h+1 · R(y)/k . We apply the tail bound for sub-

Gaussian variables (Fact 8) on Zh to get

Pr[Zh > 2
−h

R(y)] < exp

(
−

2
−2h · R(y)2

2 · (2−h+1 · R(y)/k)

)
= exp

(
−2

−h−2 · R(y) · k
)

= exp

(
−2

−h+H ′(y)−6 · 2
H (y)−H ′(y) · 2

4−H (y)
R(y) · k

)
≤ exp

(
−2

−h+H ′(y)−6 · 2
H (y)−H ′(y) · B · k

)
≤ exp

(
−2

−h+H ′(y) · ln

1

δ

)
= δ2

−H ′(y)+h
≤ δ · 2

−H ′(y)+h ,

where the second inequality uses 2
4−H (y)

R(y) ≥ B (by the defini-

tion of H (y)) and the third inequality follows from 2
H (y)−H ′(y) ≥

ln
1

δ and B · k ≥ k2 ≥ 2
6
. This concludes the proof by induc-

tion. Taking the union bound over levels h < H ′(y), it holds that

Rh (y) ≤ 2
−h+1

R(y) for any h < H ′(y) with probability at least

1 − δ .
Finally, consider level h ≥ H ′(y) and condition on RH ′(y)−1

(y) ≤

2
−H ′(y)+2

R(y). (In the case H ′(y) = 0, we have R0(y) = R(y).) Note
that for any ℓ > 0, it holds that Rℓ(y) ≤ 1

2
· (1 + 1/k) · Rℓ−1

(y).

Indeed, Rℓ(y) ≤
1

2
· (Rℓ−1

(y) + Binomial(mℓ−1
)) (see Equation 9)

and Binomial(mℓ−1
) ≤ mℓ−1

≤ Rℓ−1
(y)/k by Lemma 5. That is,

regardless of the outcome of the random choices, we always obtain

this weaker bound on the rank of an item.

By using this deterministic bound for levels H ′(y) ≤ ℓ ≤ h, we
get

Rh (y) ≤ 2
−h+H ′(y)−1 ·

(
1 +

1

k

)h−H ′(y)+1

· RH ′(y)−1
(y)

≤ 2
−h+H ′(y)−1 ·

(
1 +

1

k

)
0.5·k

· 2
−H ′(y)+2 · R(y)

≤ 2
−h+2 · R(y) ,

where in the second inequality, we use h−H ′(y)+1 ≤ 0.5 ·k (which

follows from h < H (y) and H (y) − H ′(y) ≤ log
2

ln
1

δ ≤ 0.5 · k)
together with the bound on RH ′(y)−1

(y), and the last inequality

uses the fact that (1 + 1/k)0.5·k ≤
√
e < 2. □

We now state the main result of this section, which proves The-

orem 2 assuming an advance knowledge of (a polynomial upper

bound on) the stream length n. This assumption can be removed

using the technique described in Section 5.

Theorem 34. Assume that (a polynomial upper bound on) the
stream length n is known in advance. For any parameters 0 < δ ≤ 0.5

and 0 < ε ≤ 1, let k be set as in (36). Then, for any fixed item y,
Algorithm 2 with parameters k and n computes an estimate R̂(y) of
R(y) with error Err(y) = R̂(y) − R(y) such that

Pr [| Err(y)| ≥ ε R(y)] < 3δ .

The overall memory used by the algorithm is

O
(
ε−1 · log

2(εn) · log log(1/δ )
)
.

Proof. We condition on the bounds in Lemma 33, which to-

gether hold with probability at least 1−δ . We split Err(y), the error
of the rank estimate for y, into two parts:

Err
′(y) =

H ′(y)−1∑
h=0

2
h ·Errh (y) and Err

′′(y) =
H∑

h=H ′(y)

2
h ·Errh (y) .

Note that Err(y) = Err
′(y) + Err

′′(y); we bound both these parts

by
1

2
ε R(y) w.h.p., starting with Err

′(y). If H ′(y) = 0, then clearly

Err
′(y) = 0. Otherwise, we analyze the variance of the zero-mean

sub-Gaussian variable Err
′(y)

Var[Err
′(y)] =

H ′(y)−1∑
h=0

2
2h · Var[Errh (y)]

≤

H ′(y)−1∑
h=0

2
2h ·

Rh (y)

k

≤

H ′(y)−1∑
h=0

2
2h ·

2
−h+2

R(y)

k

≤ 2
H ′(y)+2 ·

R(y)

k

= 2
H ′(y)−H (y)+2 · 2

H (y) ·
R(y)

k

≤ 2
H ′(y)−H (y)+6 ·

R(y)2

k · B

where the first inequality is by Lemma 5, the second by Lemma 33,

and the last inequality uses 2
H (y) ≤ 2

4 ·R(y)/B, which follows from

the definition of H (y).
We again apply Fact 8 to obtain

Pr [ | Err
′(y)| ≥

ε R(y)

2

]
< 2 exp

(
−

ε2 · R(y)2

4 · 2 · 2
H ′(y)−H (y)+6 · R(y)2/(k · B)

)
= 2 exp

(
−ε2 · k · B · 2

−H ′(y)+H (y)−9

)
≤ 2 exp

(
−2

−H ′(y)+H (y)
)
= 2 exp

(
− ln

1

δ

)
= 2δ ,

where the second inequality uses k · B ≥ 2 · k2 ≥ ε−2 · 2
9
.

Finally, we use deterministic bounds to analyze Err
′′(y). Note

that

RH (y)(y) ≤ 2
−H (y)+2

R(y) ≤ B/2,

where the first inequality holds because we have conditioned on

the bounds of Lemma 33 holding, and the second inequality holds

by definition of H (y). It follows that there is no important step at

25



2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

Conference’17, July 2017, Washington, DC, USA Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

level H (y), and hence no error introduced at any level h ≥ H (y),
i.e., Errh (y) = 0 for h ≥ H (y). We thus have

Err
′′(y) =

H (y)−1∑
h=H ′(y)

2
h · Errh (y)

≤

H (y)−1∑
h=H ′(y)

2
h ·

Rh (y)

k

≤

H (y)−1∑
h=H ′(y)

2
h ·

2
−h+2

R(y)

k

≤

H (y)−1∑
h=H ′(y)

ε R(y)

2 · ⌈log
2

ln
1

δ ⌉
≤

ε R(y)

2

,

where the first inequality is by Lemma 5, the second by Lemma 33,

the third inequality follows from the definition of k in (36), and

the last step uses that the sum is over H (y) − H ′(y) ≤ ⌈log
2

ln
1

δ ⌉

levels. This concludes the analysis of Err(y) and the calculation of

the failure probability.

Regarding the space bound, there are at mostH ≤ ⌈log
2
(n/B)⌉ +

1 ≤ log
2
(εn) relative-compactors by Observation 12, and each

requires B = 2 · k · ⌈log
2
(n/k)⌉ = O

(
ε−1 · log log(1/δ ) · log(εn)

)
memory words. □

The proof of Theorem 34 implies a deterministic sketch of size

O(ε−1 ·log
3(εn)), whichmatches the state-of-the-art result by Zhang

and Wang [22]. Indeed, when log
2

ln(1/δ ) ≥ log
2
(εn) ≥ H (i.e.,

δ < exp(−εn)), we have H ′(y) = 0, and in this case it is easily

seen by inspecting the proofs of Lemma 33 and Theorem 34 that

the entire analysis holds with probability 1. In more detail, when

H ′(y) = 0, the bounds in Lemma 33 hold with probability 1, and

the quantity Err
′(y) in the proof of Theorem 34 is deterministically

0, while the bound on Err
′′(y) in the proof of Theorem 34 holds

with probability 1 as well. This is sufficient to conclude that the

error guarantee holds for any choice of the algorithm’s internal

randomness. The resulting algorithm is reminiscent of deterministic

algorithms for the uniform quantiles problem [14].

We remark that a deterministic algorithm achieving space

O(ε−1 · log
2(εn) · log(n)) (nearly matching the O(ε−1 · log

3(εn))
bound derived above) also follows in a black-box manner from the

statement of Theorem 34 by setting δ = 1/nn . This setting of δ is

so small that one can union bound over all possible orderings of the

input to conclude that there is some fixed setting of the algorithm’s

randomness that guarantees that for any possible input and any

possible query y, | Err(y)| ≤ ε R(y).
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