
Simple and Deterministic Matrix Sketches

Edo Liberty

+ ongoing work with: Mina Ghashami, Jeff Philips and David Woodruff.

Edo Liberty: Simple and Deterministic Matrix Sketches 1 / 41



Data Matrices

Often our data is represented by a matrix.
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Data Matrices

which is often too large to work with on a single machine...

Data Columns Rows d n sparse
Textual Documents Words 105 - 107 > 1012 yes

Actions Users Types 101 - 104 > 108 yes

Visual Images Pixels, SIFT 106 - 107 > 109 no

Audio Songs, tracks Frequencies 106 - 107 > 109 no

ML Examples Features 102 - 104 > 105 no

Financial Prices Items, Stocks 103 -105 > 106 no

We think of A ∈ Rd×n as n column vectors in Rd and typically n� d .
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Streaming Matrices

Sometimes, we cannot store the entire matrix at all.
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Streaming Matrices

Example: can we compute AAT from a stream of columns Ai?
(enough for PCA for example).

AAT =
n∑

i=1

AiA
T
i

Näıve solution

Compute AAT in time O(nd2) and space O(d2).

Think about 1Mp images, d = 106. This solution requires 1012 operations
per update and 1T space.
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Matrix Approximation

Matrix sketching or approximation

Efficiently compute a concisely representable matrix B such that

B ≈ A or BBT ≈ AAT

Working with B instead of A is often “good enough”.

Dimension reduction

Signal denoising

Classification

Regression

Clustering

Approximate matrix multiplication

Reconstruction

Recommendation

. . .
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Matrix Approximation
Column subset selection algorithms

Paper Space Time Bound

FKV04 O(k4/ε6 max(k4, ε−2)) O(k5/ε6 max(k4, ε−2)) P, εA

DV06 #C = O(k/ε + k2 log k)

O(n(k/ε + k2 log k))

O(nnz(A)(k/ε + k2 log k)+

(n+ d)(k2/ε2 + k3 log(k/ε) + k4 log2 k))

P, εR

DKM06
“LinearTimeSVD”

#C = O(1/ε2)

O((n + 1/ε2)/ε4)

O((n + 1/ε2)/ε4 + nnz(A)) P, εL2

#C = O(k/ε2)

O((k/ε2)(n + k/ε2))

O((k/ε2)2(n + k/ε2) + nnz(A)) P, εA

DKM06
“ConstantTimeSVD”

#C+R = O(1/ε4)

O(1/ε12 + nk/ε4)

O((1/ε12 + nk/ε4 + nnz(A)) P, εL2

#C+R = O(k2/ε4)

O(k6/ε12 + nk3/ε4)

O(k6/ε12 + nk3/ε4 + nnz(A)) P, εA

DMM08
“CUR”

#C =O(k2/ε2)

#R = O(k4/ε6)

O(nd2) C, εR

MD09
“ColumnSelect”

#C = O(k log k/ε2)

O(nk log k/ε2)

O(nd2) P
O(k log k/ε2)

, εR

BDM11 #C = 2k/ε(1 + o(1)) O((ndk + dk3)ε−2/3) P2k/ε(1+o(1)), εR

[Relative Errors for Deterministic Low-Rank Matrix Approximations, Ghashami, Phillips 2013]

Sparsification and entry sampling
Paper Space Time Bound

AM07 ρn/ε2 + n · polylog(n) nnz ρn/ε2 + nnz n · polylog(n) ‖A− B‖2 ≤ ε‖A‖2

AHK06 (ñnz · n/ε2)1/2 nnz(ñnz · n/ε2)1/2 ‖A− B‖2 ≤ ε‖A‖2

DZ11 ρn log(n)/ε2 nnz ρn log(n)/ε2 ‖A− B‖2 ≤ ε‖A‖2

AKL13 ñ ρ log(n)/ε2 +

(ρ log(n) ñnz /ε2)1/2
nnz ‖A− B‖2 ≤ ε‖A‖2

[Near-optimal Distributions for Data Matrix Sampling, Achlioptas, Karnin, Liberty, 2013]
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Matrix Approximation

Linear subspace embedding sketches
Paper Space Time Bound

DKM06
LinearTimeSVD

#R = O(1/ε2)

O((d + 1/ε2)/ε4)

O((d + 1/ε2)/ε4 + nnz(A)) P, εL2

#R = O(k/ε2)

O((k/ε2)2(d + k/ε2))

O((k/ε2)2(d + k/ε2) + nnz(A)) P, εA

Sar06
turnstile

#R = O(k/ε + k log k)
O(d(k/ε + k log k))

O(nnz(A)(k/ε + k log k) + d(k/ε +

k log k)2))

PO(k/ε+k log k), εR

CW09 #R = O(k/ε) O(nd2 + (ndk/ε)) PO(k/ε), εR

CW09 O((n + d)(k/ε)) O(nd2 + (ndk/ε)) C, εR

CW09 O((k/ε2)(n + d/ε2)) O(n(k/ε2)2 + nd(k/ε2) + nd2) C, εR

Deterministic sketching algorithms
Paper Space Time Bound

FSS13 O((k/ε) log n) n((k/ε) log n)O(1) P2dk/εe, εR

Lib13 #R = O(ρ/ε)
O(dρ/ε)

O(ndρ/ε) PO(ρ/ε), εL2

GP13 #R = dk/ε + ke
O(dk/ε)

O(ndk/ε) P, εR

[Relative Errors for Deterministic Low-Rank Matrix Approximations, Ghashami, Phillips 2013]
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Frequent Directions

Goal:

Efficiently maintain a matrix B with only ` = 2/ε columns s.t.

‖AAT − BBT‖2 ≤ ε‖A‖2
f

Intuition:

Extend Frequent-items

[Finding repeated elements, Misra, Gries, 1982.]

[Frequency estimation of internet packet streams with limited space, Demaine, Lopez-Ortiz, Munro, 2002]

[A simple algorithm for finding frequent elements in streams and bags, Karp, Shenker, Papadimitriou, 2003]

[Efficient Computation of Frequent and Top-k Elements in Data Streams, Metwally, Agrawal, Abbadi, 2006]

(An algorithm so good it was invented 4 times.)
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Frequent Items

Obtain the frequency f (i) of each item in the stream of items
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Frequent Items

With d counters it’s easy but not good enough (IP addresses, queries....)
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Frequent Items

(Misra-Gries) Lets keep less than a fixed number of counters `.
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Frequent Items

If an item has a counter we add 1 to that counter.
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Frequent Items

Otherwise, we create a new counter for it and set it to 1
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Frequent Items

But now we do not have less than ` counters.
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Frequent Items

Let δ be the median counter value at time t
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Frequent Items

Decrease all counters by δ (or set to zero if less than δ)
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Frequent Items

And continue...
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Frequent Items

The approximated counts are f ′

Edo Liberty: Simple and Deterministic Matrix Sketches 19 / 41



Frequent Items

We increase the count by only 1 for each item appearance.

f ′(i) ≤ f (i)

Because we decrease each counter by at most δt at time t

f ′(i) ≥ f (i)−
∑
t

δt

Calculating the total approximated frequencies:

0 ≤
∑
i

f ′(i) ≤
∑
t

1− (`/2) · δt = n − (`/2) ·
∑
t

δt

∑
t

δt ≤ 2n/`

Setting ` = 2/ε yields

|f (i)− f ′(i)| ≤ εn
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Frequent Directions

We keep a sketch of at most ` columns
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Frequent Directions

We maintain the invariant that some columns are empty (zero valued)
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Frequent Directions

Input vectors are simply stored in empty columns
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Frequent Directions

Input vectors are simply stored in empty columns
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Frequent Directions

When the sketch is ‘full’ we need to zero out some columns...
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Frequent Directions

Using the SVD we compute B = USV T and set Bnew = US
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Frequent Directions

Note that BBT = BnewB
T
new so we don’t “lose” anything
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Frequent Directions

The columns of B are now orthogonal and in decreasing magnitude order
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Frequent Directions

Let δ = ‖B`/2‖2
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Frequent Directions

Reduce column `2
2-norms by δ (or nullify if less than δ)
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Frequent Directions

Start aggregating columns again...
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Frequent Directions

Input: `, A ∈ Rd×n

B ← all zeros matrix ∈ Rd×`

for i ∈ [n] do
Insert Ai into a zero valued column of B
if B has no zero valued colums then

[U,Σ,V ]← SVD(B)
δ ← σ2

`/2

Σ̌←
√

max(Σ2 − I`δ, 0)
B ← UΣ̌ # At least half the columns of B are zero.

Return: B
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Bounding the error

We first bound ‖AAT − BBT‖

sup
‖x‖=1

‖xA‖2 − ‖xB‖2 = sup
‖x‖=1

n∑
t=1

[〈x ,At〉2 + ‖xBt−1‖2 − ‖xBt‖2]

= sup
‖x‖=1

n∑
t=1

[‖xC t‖2 − ‖xBt‖2]

≤
n∑

t=1

‖C tTC t − BtTBt‖ · ‖x‖2

=
n∑

t=1

δt

Which gives:

‖AAT − BBT‖ ≤
n∑

t=1

δt
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Bounding the error

We compute the Frobenius norm of the final sketch.

0 ≤ ‖B‖2
f =

n∑
t=1

[‖Bt‖2
f − ‖Bt−1‖2

f ]

=
n∑

t=1

[(‖C t‖2
f − ‖Bt−1‖2

f )− (‖C t‖2
f − ‖Bt‖2

f )]

=
n∑

t=1

‖At‖2 − tr(C tTC t − BtTBt)

≤ ‖A‖2
f − (`/2)

n∑
t=1

δt

Which gives:
n∑

t=1

δt ≤ 2‖A‖2
f /`
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Bounding the error

We saw that:

‖AAT − BBT‖ ≤
n∑

t=1

δt

and that:
n∑

t=1

δt ≤ 2‖A‖2
f /`

Setting ` = 2/ε yields

‖AAT − BBT‖ ≤ ε‖A‖2
f .

The two proofs are (maybe unsurprisingly) very similar...
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Experiments

‖AAT − BBT‖ as a function of the sketch size `
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Synthetic input matrix with linearly decaying singular values.
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Experiments

Running time in second as a function of n (x-axis) and d (y-axis)
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The running time scales linearly in n, d and ` as expected.
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More results

Theorem

For any matrix A ∈ Rn×d , FrequentDirections guaranties that:

‖AAT − BBT‖2 ≤ ‖A− Ak‖2
F/(`− k).

This holds also for all k < ` including k = 0.

For example, for ` = dk + 1/εe we use O(dk + d/ε) space and have

‖AAT − BBT‖2 ≤ ε‖A− Ak‖2
F

.

Theorem

This is space optimal.
Any streaming algorithm with this guarantee must use Ω(dk + d/ε) space.

Edo Liberty: Simple and Deterministic Matrix Sketches 38 / 41



More results

Theorem

Let B ∈ R`×d be the sketch produced by FrequentDirections. For any
k < ` it holds that

‖A− πkB(A)‖2
F ≤ (1 +

k

`− k
)‖A− Ak‖2

F .

For example, for ` = dk/εe we use O(dk/ε) space and have

‖A− πkB(A)‖2
F ≤ (1 + ε)‖A− Ak‖2

F

.

Theorem

This is space optimal.
Any streaming algorithm with this guarantee must use Ω(dk/ε) space.
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More results

Theorem

There exists a variant of FrequentDirections with the same guaranties and
space complexity whose running time is

Õ(`2n + ` nnz(A))

Here, Õ(·) suppresses logarithmic factors and numerical convergence
dependencies. The power method requires Õ(1) iterations to converge.

Conjecture

This is not optimal.

Edo Liberty: Simple and Deterministic Matrix Sketches 40 / 41



Thanks
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