Simple and Deterministic Matrix Sketches

Edo Liberty

YAHOO!

+ ongoing work with: Mina Ghashami, Jeff Philips and David Woodruff.

Data Matrices

Often our data is represented by a matrix.

which is often too large to work with on a single machine...

Data	Columns	Rows	d	n	sparse
Textual	Documents	Words	10 ⁵ - 10 ⁷	$> 10^{12}$	yes
Actions	Users	Types	10 ¹ - 10 ⁴	$> 10^{8}$	yes
Visual	Images	Pixels, SIFT	10 ⁶ - 10 ⁷	$> 10^{9}$	no
Audio	Songs, tracks	Frequencies	10 ⁶ - 10 ⁷	$> 10^{9}$	no
ML	Examples	Features	10 ² - 10 ⁴	$> 10^{5}$	no
Financial	Prices	Items, Stocks	10 ³ -10 ⁵	$> 10^{6}$	no

We think of $A \in \mathbb{R}^{d \times n}$ as *n* column vectors in \mathbb{R}^d and typically $n \gg d$.

Streaming Matrices

Sometimes, we cannot store the entire matrix at all.

flickr

Example: can we compute AA^T from a stream of columns A_i ? (enough for PCA for example).

Example: can we compute AA^T from a stream of columns A_i ? (enough for PCA for example).

$$AA^T = \sum_{i=1}^n A_i A_i^T$$

Naïve solution

Compute AA^T in time $O(nd^2)$ and space $O(d^2)$.

Think about 1Mp images, $d = 10^6$. This solution requires 10^{12} operations per update and 1T space.

Matrix Approximation

Matrix sketching or approximation

Efficiently compute a concisely representable matrix B such that

$$B pprox A$$
 or $BB^T pprox AA^T$

Working with B instead of A is often "good enough".

- Dimension reduction
- Signal denoising
- Classification
- Regression
- Clustering

. . .

- Approximate matrix multiplication
- Reconstruction
- Recommendation

Matrix Approximation

Column subset selection algorithms			
Paper	Space	Time	Bound
FKV04	$O(k^4/\varepsilon^6 \max(k^4, \varepsilon^{-2}))$	$O(k^5/\varepsilon^6 \max(k^4, \varepsilon^{-2}))$	Ρ, εΑ
DV06	$\#C = O(k/\varepsilon + k^2 \log k)$	$O(nnz(A)(k/\varepsilon + k^2 \log k) +$	Ρ, <i>ε</i> R
	$O(n(k/\varepsilon + k^2 \log k))$	$(n+d)(k^2/\varepsilon^2+k^3\log(k/\varepsilon)+k^4\log^2 k))$	
DKM06	$\#C = O(1/\varepsilon^2)$	$O((n+1/\varepsilon^2)/\varepsilon^4 + \operatorname{nnz}(A))$	Ρ, εL ₂
"LinearTimeSVD"	$O((n+1/\varepsilon^2)/\varepsilon^4)$		
	$\#C = O(k/\varepsilon^2)$	$O((k/\varepsilon^2)^2(n+k/\varepsilon^2) + \operatorname{nnz}(A))$	Ρ, εΑ
	$O((k/\varepsilon^2)(n+k/\varepsilon^2))$		
DKM06	$\#C+R = O(1/\varepsilon^4)$	$O((1/\varepsilon^{12} + nk/\varepsilon^4 + nnz(A)))$	Ρ, εL ₂
"ConstantTimeSVD"	$O(1/\varepsilon^{12} + nk/\varepsilon^4)$		
	$\#C+R = O(k^2/\varepsilon^4)$	$O(k^6/\varepsilon^{12} + nk^3/\varepsilon^4 + nnz(A))$	Ρ, εΑ
	$O(k^6/\varepsilon^{12} + nk^3/\varepsilon^4)$		
DMM08	$\#C = O(k^2/\varepsilon^2)$	$O(nd^2)$	C, εR
"CUR"	$\#R = O(k^4/\varepsilon^6)$		
MD09	$\#C = O(k \log k / \varepsilon^2)$	$O(nd^2)$	$P_{O(k \log k / \varepsilon^2)}, \varepsilon R$
"ColumnSelect"	$O(nk \log k/\varepsilon^2)$		/
BDM11	$\#C = 2k/\varepsilon(1+o(1))$	$O((ndk + dk^3)\varepsilon^{-2/3})$	$P_{2k/\varepsilon(1+o(1))}, \varepsilon R$

[Relative Errors for Deterministic Low-Rank Matrix Approximations, Ghashami, Phillips 2013]

Sparsification and entry sampling			
Paper	Space	Time	Bound
AM07	$\rho n/\varepsilon^2 + n \cdot \operatorname{polylog}(n)$	$\operatorname{nnz} \rho n / \varepsilon^2 + \operatorname{nnz} n \cdot \operatorname{polylog}(n)$	$\ A - B\ _2 \le \varepsilon \ A\ _2$
AHK06	$(\widetilde{nnz} \cdot n/\varepsilon^2)^{1/2}$	$nnz(\widetilde{nnz} \cdot n/\varepsilon^2)^{1/2}$	$\ A - B\ _2 \le \varepsilon \ A\ _2$
DZ11	$\rho n \log(n) / \varepsilon^2$	nnz $\rho n \log(n) / \varepsilon^2$	$\ A - B\ _2 \le \varepsilon \ A\ _2$
AKL13	$\tilde{n} \rho \log(n) / \varepsilon^2 +$	nnz	$\ A - B\ _2 \le \varepsilon \ A\ _2$
	$(\rho \log(n) \widetilde{\text{nnz}} / \varepsilon^2)^{1/2}$		

[Near-optimal Distributions for Data Matrix Sampling, Achlioptas, Karnin, Liberty, 2013]

Edo Liberty: Simple and Deterministic Matrix Sketches

Linear subspace embedding sketches			
Paper	Space	Time	Bound
DKM06	$\#R = O(1/\varepsilon^2)$	$O((d + 1/\varepsilon^2)/\varepsilon^4 + \operatorname{nnz}(A))$	Ρ, εL ₂
LinearTimeSVD	$O((d+1/\varepsilon^2)/\varepsilon^4)$		
	$\#R = O(k/\varepsilon^2)$	$O((k/\varepsilon^2)^2(d+k/\varepsilon^2)+\operatorname{nnz}(A))$	Ρ, εΑ
	$O((k/\varepsilon^2)^2(d+k/\varepsilon^2))$		
Sar06	$\#R = O(k/\varepsilon + k\log k)$	$O(nnz(A)(k/\varepsilon + k \log k) + d(k/\varepsilon +$	$P_{O(k/\varepsilon+k\log k)}, \varepsilon R$
turnstile	$O(d(k/\varepsilon + k \log k))$	$k \log k)^2))$	
CW09	$\#R = O(k/\varepsilon)$	$O(nd^2 + (ndk/\varepsilon))$	$P_{O(k/\varepsilon)}, \varepsilon R$
CW09	$O((n+d)(k/\varepsilon))$	$O(nd^2 + (ndk/\varepsilon))$	C, εR
CW09	$O((k/\varepsilon^2)(n+d/\varepsilon^2))$	$O(n(k/\varepsilon^2)^2 + nd(k/\varepsilon^2) + nd^2)$	C, εR

Deterministic sketching algorithms			
Paper	Space	Time	Bound
FSS13	$O((k/\varepsilon) \log n)$	$n((k/\varepsilon)\log n)^{O(1)}$	$P_{2[k/\varepsilon]}, \varepsilon R$
Lib13	$\#R = O(\rho/\varepsilon)$	$O(nd\rho/\varepsilon)$	$P_{O(\rho/\varepsilon)}, \varepsilon L_2$
	$O(d\rho/\varepsilon)$		
GP13	$\#R = \lceil k/\varepsilon + k \rceil$	$O(ndk/\varepsilon)$	Ρ, εR
	$O(dk/\varepsilon)$		

[Relative Errors for Deterministic Low-Rank Matrix Approximations, Ghashami, Phillips 2013]

Goal:

Efficiently maintain a matrix B with only $\ell = 2/\varepsilon$ columns s.t.

$$\|AA^{T} - BB^{T}\|_{2} \le \varepsilon \|A\|_{f}^{2}$$

Intuition:

Extend Frequent-items

[Finding repeated elements, Misra, Gries, 1982.]

[Frequency estimation of internet packet streams with limited space, Demaine, Lopez-Ortiz, Munro, 2002] [A simple algorithm for finding frequent elements in streams and bags, Karp, Shenker, Papadimitriou, 2003] [Efficient Computation of Frequent and Top-k Elements in Data Streams, Metwally, Agrawal, Abbadi, 2006]

(An algorithm so good it was invented 4 times.)

Obtain the frequency f(i) of each item in the stream of items

Edo Liberty: Simple and Deterministic Matrix Sketches

Frequent Items

With d counters it's easy but not good enough (IP addresses, queries....)

(Misra-Gries) Lets keep less than a fixed number of counters ℓ .

Edo Liberty: Simple and Deterministic Matrix Sketches

Frequent Items

If an item has a counter we add 1 to that counter.

Edo Liberty: Simple and Deterministic Matrix Sketches

Frequent Items

Otherwise, we create a new counter for it and set it to $1 \label{eq:constraint}$

Edo Liberty: Simple and Deterministic Matrix Sketches

But now we do not have less than ℓ counters.

Edo Liberty: Simple and Deterministic Matrix Sketches

Let δ be the median counter value at time t

Edo Liberty: Simple and Deterministic Matrix Sketches

Decrease all counters by δ (or set to zero if less than δ)

Edo Liberty: Simple and Deterministic Matrix Sketches

Frequent Items

And continue...

Edo Liberty: Simple and Deterministic Matrix Sketches

The approximated counts are f'

Edo Liberty: Simple and Deterministic Matrix Sketches

Frequent Items

 \blacksquare We increase the count by only 1 for each item appearance.

 $f'(i) \leq f(i)$

Because we decrease each counter by at most δ_t at time t

$$f'(i) \ge f(i) - \sum_t \delta_t$$

Calculating the total approximated frequencies:

$$0 \leq \sum_{i} f'(i) \leq \sum_{t} 1 - (\ell/2) \cdot \delta_{t} = n - (\ell/2) \cdot \sum_{t} \delta_{t}$$
$$\sum_{t} \delta_{t} \leq 2n/\ell$$

• Setting $\ell = 2/\varepsilon$ yields

$$|f(i) - f'(i)| \le \varepsilon n$$

We keep a sketch of at most ℓ columns

We maintain the invariant that some columns are empty (zero valued)

Input vectors are simply stored in empty columns

Input vectors are simply stored in empty columns

When the sketch is 'full' we need to zero out some columns...

Using the SVD we compute $B = USV^T$ and set $B_{new} = US$

Note that
$$BB^{T} = B_{new}B^{T}_{new}$$
 so we don't "lose" anything

The columns of B are now orthogonal and in decreasing magnitude order

Let $\delta = \|B_{\ell/2}\|^2$

Reduce column ℓ_2^2 -norms by δ (or nullify if less than δ)

Start aggregating columns again...

Input: ℓ , $A \in \mathbb{R}^{d \times n}$ $B \leftarrow \text{all zeros matrix} \in \mathbb{R}^{d \times \ell}$ for $i \in [n]$ do Insert A_i into a zero valued column of B if B has no zero valued colums then $[U, \Sigma, V] \leftarrow SVD(B)$ $\delta \leftarrow \sigma_{\ell/2}^2$ $\check{\Sigma} \leftarrow \sqrt{\max(\Sigma^2 - I_\ell \delta, 0)}$ $B \leftarrow U \Sigma$ # At least half the columns of B are zero. **Return**: B

Bounding the error

We first bound $||AA^T - BB^T||$

$$\sup_{\|x\|=1} \|xA\|^2 - \|xB\|^2 = \sup_{\|x\|=1} \sum_{t=1}^n [\langle x, A_t \rangle^2 + \|xB^{t-1}\|^2 - \|xB^t\|^2]$$
$$= \sup_{\|x\|=1} \sum_{t=1}^n [\|xC^t\|^2 - \|xB^t\|^2]$$
$$\leq \sum_{t=1}^n \|C^t^T C^t - B^t^T B^t\| \cdot \|x\|^2$$
$$= \sum_{t=1}^n \delta_t$$

Which gives:

$$\|AA^{T} - BB^{T}\| \le \sum_{t=1}^{n} \delta_{t}$$

Bounding the error

We compute the Frobenius norm of the final sketch.

$$0 \le \|B\|_{f}^{2} = \sum_{t=1}^{n} [\|B^{t}\|_{f}^{2} - \|B^{t-1}\|_{f}^{2}]$$

$$= \sum_{t=1}^{n} [(\|C^{t}\|_{f}^{2} - \|B^{t-1}\|_{f}^{2}) - (\|C^{t}\|_{f}^{2} - \|B^{t}\|_{f}^{2})]$$

$$= \sum_{t=1}^{n} \|A_{t}\|^{2} - tr(C^{tT}C^{t} - B^{tT}B^{t})$$

$$\le \|A\|_{f}^{2} - (\ell/2)\sum_{t=1}^{n} \delta_{t}$$

Which gives:

$$\sum_{t=1}^n \delta_t \le 2 \|A\|_f^2 / \ell$$

Bounding the error

We saw that:

$$\|AA^{\mathsf{T}} - BB^{\mathsf{T}}\| \le \sum_{t=1}^{n} \delta_t$$

and that:

$$\sum_{t=1}^n \delta_t \leq 2 \|A\|_f^2/\ell$$

Setting $\ell = 2/\varepsilon$ yields

$$\|AA^{T} - BB^{T}\| \leq \varepsilon \|A\|_{f}^{2}.$$

The two proofs are (maybe unsurprisingly) very similar...

Experiments

 $||AA^T - BB^T||$ as a function of the sketch size ℓ

Synthetic input matrix with linearly decaying singular values.

Experiments

Running time in second as a function of n (x-axis) and d (y-axis)

The running time scales linearly in n, d and ℓ as expected.

Edo Liberty: Simple and Deterministic Matrix Sketches

Theorem

For any matrix $A \in \mathbb{R}^{n \times d}$, FrequentDirections guaranties that:

$$\|AA^{T} - BB^{T}\|_{2} \leq \|A - A_{k}\|_{F}^{2}/(\ell - k).$$

This holds also for all $k < \ell$ including k = 0.

For example, for $\ell = \lceil k+1/arepsilon \rceil$ we use O(dk+d/arepsilon) space and have

$$\|AA^{T} - BB^{T}\|_{2} \le \varepsilon \|A - A_{k}\|_{F}^{2}$$

Theorem

This is space optimal.

Any streaming algorithm with this guarantee must use $\Omega(dk + d/\varepsilon)$ space.

Edo Liberty: Simple and Deterministic Matrix Sketches

Theorem

Let $B \in \mathbb{R}^{\ell \times d}$ be the sketch produced by FrequentDirections. For any $k < \ell$ it holds that

$$\|A - \pi_B^k(A)\|_F^2 \le (1 + rac{k}{\ell - k})\|A - A_k\|_F^2.$$

For example, for $\ell = \lceil k/\varepsilon \rceil$ we use $O(dk/\varepsilon)$ space and have

$$\|A - \pi_B^k(A)\|_F^2 \le (1 + \varepsilon)\|A - A_k\|_F^2$$

Theorem

This is space optimal. Any streaming algorithm with this guarantee must use $\Omega(dk/\varepsilon)$ space.

Edo Liberty: Simple and Deterministic Matrix Sketches

Theorem

There exists a variant of FrequentDirections with the same guaranties and space complexity whose running time is

 $\tilde{O}(\ell^2 n + \ell \operatorname{nnz}(A))$

Here, $\tilde{O}(\cdot)$ suppresses logarithmic factors and numerical convergence dependencies. The power method requires $\tilde{O}(1)$ iterations to converge.

Conjecture

This is not optimal.

Thanks