
STRATIFIED SAMPLING  
MEETS  
MACHINE LEARNING 
 
KEVIN LANG 
KONSTANTIN SHMAKOV  
EDO LIBERTY 



2 



3 



4 

Apps with Flurry SDK 
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Examples: 
•  Number of event of a certain type 
•  Number of unique user  
•  Number of unique users in a specific day 
•  Total time spent in certain geo 
•  Average $ spent by age 
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SAMPLING 

Challenges:  
1.  The data is very large. Computing              exactly is too costly. 
2.  The function       is user specified and completely unconstrained. 

 
Good News: 
And approximate answer is acceptable (if the error is small) 
 
 
Solution: 
Estimate the answer on a random subset of the records 
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NOTATIONS 

 
 
•                   for brevity 

•                   the exact answer for the query q!

•       the probability of choosing record 

•       the set of sampled records, each chosen with probability  

•                          the Horvitz-Thompson estimator for!

qi := q(ui)

pi

y :=
P

i qi

S pi

ỹ =
P

i2S qi/pi y
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PROPERTIES  
 
•                       Horvitz-Thompson estimator is unbiased 

•                                              its standard deviation isn’t large!

•                                                     probability for large error is small 

       
 
      (Olken, Rotem and Hellerstein 1986, and 1990) application to databases 
      (Acharya, Gibbons, Poosala 2000) uniform sampling is best in the worst case 
 

E[ỹ � y] = 0

�[ỹ � y]  y
p

1/(⇣ · card(q))

card(q) :=
P

|qi|/max |qi|⇣ = min
i

pi

Pr[|ỹ � y| � "y]  e�O("2⇣·card(q))

card(q) ⇠ ⌦(n) ! |S| ⇠ 1/"2
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•  Sample = 100,000 US individuals.  
•  Query = Republicans vs. Democrats in American Samoa?  

 
•  Sample different strata (e.g. US territories) with different probabilities.  
    
     (Neyman, Jerzy 1934) 

STRATIFIED SAMPLING 

card(q)If             is small      must be large  |S|

American 
Samoa is 0.02% 
of population  

 

Only ~20 from 
Samoa in the 

sample 
 

Survey error is 
very large!     
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DBLP EXAMPLE 

Choosing the right strata is hard! 
 
•  2,101,151 papers  
•  1000 most populous venues  
•  Query example  
                   title contains “learning” and # authors <= 3 
                   title contains “mechanism” and year > 2004 
 
What is the right stratification here? 
 
•  Stratifying by venue made things worse! 
•  Stratifying by year was better but still worse than uniform sampling. 
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SAMPLING, STRATIFICATION, AND DATABASES 

 
•  Design strata that minimize worst case variance on possible queries 
•  Linearly combine strata based on record features 
•  Combine stratifies and uniform sampling: Congressional Sampling 

o  Acharya, Gibbons, Poosala 2000: 
 
Important idea: consider past queries to the database! 

•  Each stratum is a set of records that agree on all queries 
o  Chaudhuri, Das and Narasayya 2007: optimize for the query log 

 
•  Split to two strata, per each query. Take linear combinations 

o  Joshi, Jermaine, 2008: linear combinations of stratified probabilities 
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OUR APPROACH 

•  Assume queries are drawn from a distribution 

•  Use the query log      as a “training set” (assumed w.r.t.     )  

•  Allow each record to be sampled with a different probability   

•  Minimize the Risk 

•  This translates to  

                                         unknown 

Q

Q Q

pi

E[(ỹ � y)2]

Eq⇠Q
X

i

q2i (1/pi � 1)
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OUR APPROACH 

•  ERM: Minimize  

•  Sampling budget                                  (                 ) 

•  Regularization                                       (                     ) 

X

q2Q

X

i

q2i (1/pi � 1)

Query log 

X

i

pici  B
P

i ci ⌧ B

8 i pi 2 [⇣, 1] ⇣  B/
P

i ci
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OUR APPROACH 

•  Solve with Lagrange multipliers  

•  By KKT conditions 

                                  or                                                 or                 

max

↵,�,�
[

1

|Q|
X

q2Q

X

i

q2i (1/pi � 1)�
X

i

↵i(pi � ⇣)

�
X

i

�i(1� pi)� �(B �
X

i
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pi /
q
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1
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P
q2Q q2ipi = ⇣ pi = 1
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OUR APPROACH 

Alg’ 
Risk 

Best  
Risk  

Database  
“badness” 

Training  
Set size 

Risk(p)  Risk(p⇤)

 
1 +O

 
skew

s
log(n/�)

|Q|

!!
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RESULTS 
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