
Data	Mining	Distributed	Streams

Edo	Liberty
Principal	Scientist	
Amazon	Web	Services

Data

Computation Result

The	World

Single	machine	data	processing

Data Data Data Data

Computation Result

The	World

Distributed	storage

Data	+
Compute

Data	+
Compute

Data	+
Compute

Data	+
Compute

Computation Result

The	World

Data	+
Compute

Data	+
Compute

Data	+
Compute

Data	+
Compute

Distributed	compute	(map/reduce,	MPI,	…)	

Data	+
Compute

Data	+
Compute

Data	+
Compute

Data	+
Compute

Computation Result

The	World

Data	+
Compute

Data	+
Compute

Data	+
Compute

Data	+
Compute

ComputationQuery

Distributed	model	(indexes,	databases,	Spark…)	

207	big-data	infographics	(a	meta	infographic)

Sketch

The	World

Query	Algorithm ResultQuery

Result

Compute

The	streaming	model

Merge+	
Sketch

The	World

Query	Algorithm ResultQuery

Result

Compute	
+	Sketch

Compute	
+	Sketch

Compute	
+	Sketch

Compute	
+	Sketch

The	distributed	streaming	model

Sketch

Result

Iterator

Computation

The	streaming	model	(more	accurately)

O(n) Items

O(polylog(n)) Space

O(polylog(n)) Computation	per	item

1 7 8 1 0 1 7 7

Sketch Result

Iterator Iterator

Communication	complexity

1 7 8 1 0 1 7 7

Items	
(words,	IP-addresses,	events,	clicks,...)
• Item	frequencies
• Approximate	Quantiles	
• Counting	distinct	elements
• Moment	and	entropy	estimation
• Approximate	set	operations
• Sampling
Vectors	
(text	documents,	images,		example	features,...)
• Dimensionality	reduction
• Clustering	(k-means,	k-median,…)
• Linear	Regression
• Machine	learning	(some	of	it	at	least)

What	Can	we	do	in	this	model?
Matrices
(text	corpora,	recommendations,	...)
• Covariance	estimation	matrix
• Low	rank	approximation
• Sparsification

Graphs*
(social	networks,	communications,	...)
• Connectivity
• Cut	Sparsification
• Weighted	Matching	

Items	
(words,	IP-addresses,	events,	clicks,...)
• Item	frequencies
• Approximate	Quantiles	
• Counting	distinct	elements
• Moment	and	entropy	estimation
• Approximate	set	operations
• Sampling
Vectors	
(text	documents,	images,		example	features,...)
• Dimensionality	reduction
• Clustering	(k-means,	k-median,…)
• Linear	Regression
• Machine	learning	(some	of	it	at	least)

What	Can	we	do	in	this	model?
Matrices
(text	corpora,	recommendations,	...)
• Covariance	estimation	matrix
• Low	rank	approximation
• Sparsification

Graphs*
(social	networks,	communications,	...)
• Connectivity
• Cut	Sparsification
• Weighted	Matching	

Frequency	Counting

Misra,	Gries.	Finding	repeated	elements,	1982.

Demaine,	Lopez-Ortiz,	Munro.	Frequency	estimation	of	internet	packet	streams	with	limited	space,	2002

Karp,	Shenker,	Papadimitriou.	A	simple	algorithm	for	finding	frequent	elements	in	streams	and	bags,	2003

The	name	``Lossy Counting"	was	used	for	a	different	algorithm	by	Manku and	Motwani,	2002

Metwally,	Agrawal,	Abbadi,	Efficient	Computation	of	Frequent	and	Top-k	Elements	in	Data	Streams,	2006

Charikar,	Chen,	Farach-Colton,	Finding	frequent	items	in	data	streams,	2002

Cormode,	Muthukrishnan,	An	Improved	Data	Stream	Summary:	The	Count-Min	Sketch	and	its	Applications.

n

f() = 5

Problem	Definition

|f 0 � f | < "n

Can	we	do	better	than	sampling?

f 0() = 3 · n/`

` = Õ(1/"2)

`

`

`

`

`

`

`

f 0() = 0

`

f 0() = 2

Assume	we	delete						times	t

Second	fact: f

0(x) � f(x)� t

f

0(x) f(x)First	fact:

Analysis

Therefore:	 |f 0(x)� f(x)| t

We	delete							different	items	every	time!

Third	fact: t n/`

`

Analysis

We	get	that:

⌅
When:																																		(much	better	than	sampling!)` = 1/"

|f 0(x)� f(x)| < "n

Items’	exact	probability	 p(x) = f(x)/n

p

0(x) = f

0(x)/n

|p0(x)� p(x)| 1/`

Analysis

Approximate	probability	

We	get:

If																															we	get	only	a																			error	in	our	estimations.

We	would	need	10	billion samples	to	get	the	same	accuracy!

` = 10, 000 0.01%

Email	threads

A	simple	email	thread	(that’s	not	very	hard	to	do…)

Threading	Machine	Generated	Email

Ailon,	Karnin,	Maarek,	Liberty,	Threading	Machine	Generated	Email,	WSDM	2013

Threading	Machine	Generated	Email

Threading	Machine	Generated	Email

Streaming	quantiles

Manku,	Rajagopalan,	Lindsay.	Random	sampling	techniques	for	space	efficient	
online	computation	of	order	statistics	of	large	datasets.
Munro,	Paterson.	Selection	and	sorting	with	limited	storage.
Greenwald,	Khanna.	Space-efficient	online	computation	of	quantile	summaries.
Wang,	Luo,	Yi,	Cormode.	Quantiles	over	data	streams:	An	experimental	study.
Greenwald,	Khanna.	Quantiles	and	equidepth histograms	over	streams.
Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi.	Mergeable summaries.
Felber,	Ostrovsky.	A	randomized	online	quantile	summary	in	O((1/ε)	log(1/ε))	words.
Lang,	Karnin,	Liberty,	Optimal	Quantile	Approximation	in	Streams.

Problem	Definition

n

0 nn/2

R() = 0.6 · n

|R0 �R| < "nSampling																						values	gives can	we	do	better?	Õ(1/"2)

The	basic	buffer	idea

1 0 35 4 7

Buffer	of	size	k

The	basic	buffer	idea

Stores	k	stream	entries

1

0
3

5

4
7

The	basic	buffer	idea

The	buffer	sorts	k	stream	entries

1
0

3

5
4

7

The	basic	buffer	idea

Deletes	every	other	item

1
0

3

5
4

7

The	basic	buffer	idea

And	outputs	the	rest	
with	double	the	weight

035

The	basic	buffer	idea

0

0

x x

1 54 7

1

3

3

4

5

7

R(x) = 2

R

0(x) = 2

R

0(x) = 2

R(x) = 5

R

0(x) = 4

R

0(x) = 6

The	basic	buffer	idea

Repeat													time	until	
the	end	of	the	stream

0

|R0(x)�R(x)| < n/k

nn/2

n/k

1 0 355

n

Buffers	of	size	 k

|R0
(x)�R(x)| n log2(n)/k

log2(n)

1 0 35

Manku-Rajagopalan-Lindsay	(MRL)	sketch

k = log2(n)/"If	we	set

|R0(x)�R(x)| "nWe	get

And	we	maintain	only																												items	from	the	stream!
log

2
2(n)/"

Manku-Rajagopalan-Lindsay	(MRL)	sketch

Greenwald-Khanna	(GK)	sketch

|R0(x)�R(x)| "nIt	gets

And	maintains	only																																		items	from	the	stream!

Uses	a	completely	different	construction

O(log(n)/")

Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi		(1)

Buffers	of	size	 klog(1/")

start	sampling	
after																					itemsO(1/"2)

log

2
(1/")/"Reduces	space	usage	to																																					items	from	the	stream.

1 0 35

Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi		(2)

E[R0(x)] = R(x)

R

0(x) is	a	random	
variable	now	and

R(x) = 1

R

0(x) = 2

R

0(x) = 0

x

Reduces	space	usage	to																																					items	from	the	stream.log

3/2
(1/")/"

5 7

5

7

Reduces	space	usage	to																																					items	from	the	stream.

Lang,	Karnin,	Liberty	(1)

Exponentially	shrinking	buffers

p
log(1/")/"

1 0 35

Reduces	space	usage	to																																					items	from	the	stream.

Lang,	Karnin,	Liberty	(2)

Exponentially	decreasing		buffer	sizes

GK	Sketch

log log(1/")/"

1 0 35

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 100 1000 10000 100000 1e+06

E
rr

o
r

Number of Items in Randomly Permuted Stream

Lazy KLL versus (Sketch Library and Two Variants)

Sketch Library
Variant 1
Variant 2
Lazy KLL

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100 1000 10000 100000 1e+06

S
p
a
ce

 U
se

d
 F

o
r

S
to

ri
n
g
 S

a
m

p
le

s

Number of Items in Randomly Permuted Stream

Lazy KLL versus (Sketch Library and Two Variants)

Sketch Library
Variant 1
Variant 2
Lazy KLL

Some	experimental	results	

Count	Distinct
(Demo	Only)

>>head	data.csv
0
1
0
3
0
2
3
7
3
2

In	this	one,	row	i tasks	a	value	from	[0,i]	uniformly	at	random.

Assume	you	need	to	estimate	the	number	of	unique numbers	in	a	file

>>time wc -lc data.csv
10000000	76046666	data.csv

real	0m0.101s
user 0m0.072s
sys 0m0.021s

Reading	the	file	take	~1/10	seconds.	We	don’t	foresee	IO	being	an	issue.

Some	stats:	there	are	10,000,000	such	numbers	in	this	~76Mb	file.

>>time	sort	data.csv -u	|	wc -l
5001233

real	2m37.071s
user	2m36.587s
sys	0m0.376s

To	count	the	number	of	distinct	items	you	might	try	this:

>>sort	data.csv |	uniq |	wc	-l

>>sort	data.csv -u	|	wc	-l

However,	it	is	faster	to	have	“uniqify”	while	sorting.

>>time	sort data.csv -u	-n	|	wc -l
5001233

real 0m11.809s
user 0m11.587s
sys 0m0.228s

Still,	most	of	the	time	is	spent	on	comparing	strings....

>>sort data.csv -u	-n		-S	100%	|	wc -l

This	is	much	better!

>>time	sketch	uniq	data.csv
Estimate :	4974249
Upper	Bound	:	5116569
Lower	Bound	:	4835874

real	0m1.527s
user	0m1.506s
sys	0m0.152s

This	is	the	way	to	do	this	with	the	sketching	library

>>sketch	uniq data.csv

Too	fast	to	use	the	system	monitor UI...

It	uses	~	32k	of	memory!

Thank	you!

