Data Mining Distributed Streams

Edo Liberty
Principal Scientist amazon
Amazon Web Services Web SerVICGST“"

Single machine data processing

Data

Computation

Distributed storage

Computation

N,

N,

N,

N,

Data +
Compute

Data +

Compute

Data + Data +
Compute Compute
Data + Data +
Compute Compute
S e S e

Data +
Compute

Data +

Compute

Computation

Distributed compute (map/reduce, MPI, ...)

N,

N,

N,

N,

Data +
Compute

Data +

Compute

Query p—>

Data +
Compute

Data +

Compute

Data +
Compute

Data +

Compute

Data +
Compute

Data +

Compute

Computation

Computation

Distributed model (indexes, databases, Spark...)

207 big-data infographics (a meta infographic

[. @Il

KINESIS
ANALYTICS

Q3X

Filtering
System

1 ,x\‘

W
.’
W

\

\

Good Emails Bad Emails

The streaming model

Compute

| Sketch I

Query

—>

Query Algorithm

Result

(3

The distributed streaming model

Compute
+ Sketch

Compute
+ Sketch

Compute
+ Sketch

Compute
+ Sketch

Query

—>

Query Algorithm

Result

L

The streaming model (more accurately)

11171181 11] e ¢ o @ ¢ ¢ © o o o o o o o o o lIOMKIYITUYYZH V7

O(n)Iltems I
lterator O(polylog(n)) Computation per item
\) Computation

O(polylog(n)) Space

Communication complexity

| |

Iterator Iterator

VL

£l

What Can we do in this model?

Items Matrices

* [ltem frequencies

* Approximate Quantiles

e Counting distinct elements

* Moment and entropy estimation
* Approximate set operations

e Covariance estimation matrix
* Low rank approximation

* Sparsification

e Sampling

Vectors Graphs®

(text documents, images, example features,...) (social networks, communications, ...)
* Dimensionality reduction * Connectivity

* Clustering (k-means, k-median,...) « Cut Sparsification

* Linear Regression « Weighted Matching

* Machine learning (some of it at least)

What Can we do in this model?

Items Matrices

* [tem frequencies G —
» Approximate Quantiles «G———

* Counting distinct elements < G——
* Moment and entropy estimation
* Approximate set operations

e Covariance estimation matrix
* Low rank approximation

* Sparsification

e Sampling

Vectors Graphs®

(text documents, images, example features,...) (social networks, communications, ...)
* Dimensionality reduction * Connectivity

* Clustering (k-means, k-median,...) « Cut Sparsification

* Linear Regression « Weighted Matching

* Machine learning (some of it at least)

Frequency Counting

Misra, Gries. Finding repeated elements, 1982.

Demaine, Lopez-Ortiz, Munro. Frequency estimation of internet packet streams with limited space, 2002

Karp, Shenker, Papadimitriou. A simple algorithm for finding frequent elements in streams and bags, 2003
The name “"Lossy Counting" was used for a different algorithm by Manku and Motwani, 2002

Metwally, Agrawal, Abbadi, Efficient Computation of Frequent and Top-k Elements in Data Streams, 2006

Charikar, Chen, Farach-Colton, Finding frequent items in data streams, 2002

Cormode, Muthukrishnan, An Improved Data Stream Summary: The Count-Min Sketch and its Applications.

Problem Definition

Can we do better than sampling?

Analysis

First fact: f/(:lj) < f(x)

= Assume we delete t times

[]
.=.E.=.~.~.

Second fact: [(x) > f(x) —t

Therefore: | f'(z) — f(z)]| <t

Analysis

Third fact: ¢ < n/€

= We delete £ different items every time!

[]
.=.E.=.~.~.

We get that: |f/(£lj) — f(:l:’)| < En

N
When: f = 1/5 (much better than sampling!)

Analysis

ltems’ exact probability p(:lf) — f(a:')/n

Approximate probability p’(a:) — f’(:z:)/n
We get: p'(z) —p(z)] < 1/¢

if £ = 10,000 wegetonlya 0.01% errorin our estimations.

We would need 10 billion samples to get the same accuracy!

Email threads

A Home Mail News Sports Finance Weather Games Groups VTS Screen Flickr Apps
YAHOO, Search Web
MAIL
B - @
/" Compose €« @« > ‘ I Delete EA Move v & spam v B8 MoreX ‘
Inbox (74) following up from your CMU visit (3)
Drafts —
Sent Emma Brunskill Hi Edo, It was very intere: Mar 3
Spam (99) M Var &
Hi Emma, Thanks for reaching out, | h:
Trash € ‘ | @
7 il Emma Brunskill Mar 7
To Me
“—

A simple email thread (that’s not very hard to do...)

Threading Machine Generated Email

B Personal

B Social

Retail

O Entertainment

O Jobs

OFinance

O Coupons

OTravel

OEducation

O Consumer Packaged Goods
O Small Business and B2B
O Telecommunications

O Other

Ailon, Karnin, Maarek, Liberty, Threading Machine Generated Email, WSDM 2013

Threading Machine Generated Email

“You submitted an order in the
amount of * usd to overstock.com.”

PayPal.com:

overstock.com:

“Overstock.com password

reset request.”

payless.com

“Order confirmation”

C=193

w=12,098

payless.com

overstock.com:
“Your order is shipped’ “Order confirmation”

C="53
w=1,395

(

overstock.com:
“Your overstock.com
order has shipped.”

C=1,7}2
w=06,446

Threading Machine Generated Email

Order
Confirmation
(retail)

64 % Shipping

Notification

Utility bill
payment
due

Payment
received

Insurance
payment
due

Service
cancelation

15%

Streaming quantiles

Manku, Rajagopalan, Lindsay. Random sampling techniques for space efficient
online computation of order statistics of large datasets.

Munro, Paterson. Selection and sorting with limited storage.

Greenwald, Khanna. Space-efficient online computation of quantile summaries.

Wang, Luo, Yi, Cormode. Quantiles over data streams: An experimental study.

Greenwald, Khanna. Quantiles and equidepth histograms over streams.

Agarwal, Cormode, Huang, Phillips, Wei, Yi. Mergeable summaries.

Felber, Ostrovsky. A randomized online quantile summary in O((1/¢) log(1/¢g)) words.
Lang, Karnin, Liberty, Optimal Quantile Approximation in Streams.

Problem Definition

Sampling 0(1/52)values gives ’R/ — R‘ < gn can we do better?

The basic buffer idea

Buffer of size k

The basic buffer idea

Stores k stream entries

O 0 I A B | Fan)l RU'S)

The basic buffer idea

The buffer sorts k stream entries

Ol—|Wlr W,

The basic buffer idea

Deletes every other item

The basic buffer idea

And outputs the rest
with double the weight

The basic buffer idea
R(z) =2

The basic buffer idea

Repeat n/k time until
the end of the stream

Manku-Rajagopalan-Lindsay (MRL) sketch

log,(n) Buffers of size k

\
l \

Manku-Rajagopalan-Lindsay (MRL) sketch

fweset k =log,(n)/e

We get ’R,($) — R(CE)‘ < en

And we maintain only logg (n)/e items from the stream!

Greenwald-Khanna (GK) sketch

Uses a completely different construction

tgets |R'(2) — R(z)| <en

And maintains only O(log(n)/e) items from the stream!

Agarwal, Cormode, Huang, Phillips, Wei, Yi (1)

log(l/s) Buffers of size k

\
l \ start sampling

after 0(1/52) items
\

Reduces space usage to 10g2 (1/6)/8 items from the stream.

Agarwal, Cormode, Huang, Phillips, Wei, Yi (2)

R(x) =1
5 | 7
R'(z) = 2 ,
5 ! R (:I?) is a random
i variable now and
R’ =0 / _
(:zir) : E[R(z)] = R(z)
z

Reduces space usage to log3/2 (1/8)/8 items from the stream.

Lang, Karnin, Liberty (1)

Exponentially shrinking buffers

\
l \

Reduces space usage to \/log(l/g)/g items from the stream.

Lang, Karnin, Liberty (2)

Exponentially decreasing buffer sizes

A
| \

o o o o O 3

\ wisyo
N

ol
hich 1 opt

Reduces space usage to log log(l/e)/g items from the stream.

Some experimental results

Error

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

0.001

Lazy KLL versus (Sketch Library and Two Variants)

Sketch Library
Variant 1
Variant 2 o
Lazy KLL +

100

1000
Number of ltems in Randomly Permuted Stream

10000 100000 1e+06

Space Used For Storing Samples

4000

3500

3000

2500

2000

1500

1000

500

Lazy KLL versus (Sketch Library and Two Variants)

: : | -
i i ; L =
‘ ‘ j O
; (T ‘
; ; EmD COE—TE—TE—
e N R .. O e
; ‘ —
: MR o
‘ I
i+ it : Sketch Library

i ! Variant 1 o}
‘ : Variant 2 o}
Lazy KLL +
100 1000 10000 100000 1e+06

Number of ltems in Randomly Permuted Stream

Count Distinct
(Demo Only)

@ GitHub, Inc. [US] https://github.com/datasketches

sketches-core
Core Sketch Library.

@Java w415 ¥ 119 Updated a day ago

YAHOO! splice

Q >

amazon
web services™

Assume you need to estimate the number of unique numbers in a file

>>head data.csv

N WN W INO WO RO

In this one, row i tasks a value from [0,i] uniformly at random.

Some stats: there are 10,000,000 such numbers in this ~76Mb file.

>>time wc -Ic data.csv
10000000 76046666 data.csv

real 0Om0.101s
user 0OmO0.072s
sys 0m0.021s

Reading the file take ~1/10 seconds. We don’t foresee |10 being an issue.

To count the number of distinct items you might try this:

>>sort data.csv | uniq | wc -l

However, it is faster to have “uniqify” while sorting.

>>sort data.csv -u | wc -l

Parent Process: bash (11203) User: libertye (2045342942)

>>time sort data.csv -u | wc -l rocess Group: cat (12535)

500 1233 % CPU: 99.50 Recent hangs: 0
Lldsply Statistics Open Files and Ports

Real Memory Size; 49.9 MB
/‘Mmorysi;e: 2.38 GB
real 2m37°07 1S) Shared Memory Size: 224 KB

user 2m36.587s Private Memory Size: 49.3 MB
sys 0OmO0.376s

Still, most of the time is spent on comparing strings....

>>sort data.csv -u-n -S 100% | wc -I

This is much better!

Parent Process: bash (11203) User: libertye (2045342942)

>>time sort data.csv -u-n | Wc -l | pocess crow: sortqas22)

500 1233 % CPU: 99.57 Recent hangs: 0
L4ueps Statistics Open Files and Ports

Real Memory Size: 531.1 MB
/ﬂfm:e: 4.27 GB
real 0m11-8095) Shared Memory Size: 212 KB

user 0m11.587s Private Memory Size: 530.6 MB
sys 0m0.228s

This is the way to do this with the sketching library

>>sketch uniq data.csv

>>time sketch uniq data.csv
Estimate : 4974249
Upper Bound : 5116569
Lower Bound : 4835874

Too fast to use the system monitor Ul...

It uses ~ 32k of memory!

real 0Om1.527s -
user Om1.506s
sys Om0.152s

Thank youl

dmazon
webservices™

