Data Mining Distributed Streams

Edo Liberty Principal Scientist Amazon Web Services

Single machine data processing

Distributed storage

Distributed compute (map/reduce, MPI, ...)

Distributed model (indexes, databases, Spark...)

207 big-data infographics (a meta infographic)

Amazon Kinesis Analytics

The streaming model

The distributed streaming model

The streaming model (more accurately)

Communication complexity

What Can we do in this model?

Items

(words, IP-addresses, events, clicks,...)

- Item frequencies
- Approximate Quantiles
- Counting distinct elements
- Moment and entropy estimation
- Approximate set operations
- Sampling

Vectors

(text documents, images, example features,...)

- Dimensionality reduction
- Clustering (k-means, k-median,...)
- Linear Regression
- Machine learning (some of it at least)

Matrices

(text corpora, recommendations, ...)

- Covariance estimation matrix
- Low rank approximation
- Sparsification

Graphs*

(social networks, communications, ...)

- Connectivity
- Cut Sparsification
- Weighted Matching

What Can we do in this model?

Items

(words, IP-addresses, events, clicks,...)

- Item frequencies <
- Approximate Quantiles
- Counting distinct elements
- Moment and entropy estimation
- Approximate set operations
- Sampling

Vectors

(text documents, images, example features,...)

- Dimensionality reduction
- Clustering (k-means, k-median,...)
- Linear Regression
- Machine learning (some of it at least)

Matrices

(text corpora, recommendations, ...)

- Covariance estimation matrix
- Low rank approximation
- Sparsification

Graphs*

(social networks, communications, ...)

- Connectivity
- Cut Sparsification
- Weighted Matching

Frequency Counting

Misra, Gries. Finding repeated elements, 1982.

Demaine, Lopez-Ortiz, Munro. Frequency estimation of internet packet streams with limited space, 2002 Karp, Shenker, Papadimitriou. A simple algorithm for finding frequent elements in streams and bags, 2003 The name ``Lossy Counting" was used for a different algorithm by Manku and Motwani, 2002 Metwally, Agrawal, Abbadi, Efficient Computation of Frequent and Top-k Elements in Data Streams, 2006 Charikar, Chen, Farach-Colton, Finding frequent items in data streams, 2002 Cormode, Muthukrishnan, An Improved Data Stream Summary: The Count-Min Sketch and its Applications.

Problem Definition

Can we do better than sampling?

Analysis

First fact: $f'(x) \leq f(x)$

Analysis

Third fact: t

$$t \le n/\ell$$

We get that:
$$|f'(x) - f(x)| < \varepsilon n$$

When: $\ell = 1/\varepsilon$ (much better than sampling!)

Analysis

Items' exact probability p(x) = f(x)/nApproximate probability p'(x) = f'(x)/n

We get:
$$|p'(x) - p(x)| \le 1/\ell$$

If $\ell = 10,000\,$ we get only a $0.01\%\,$ error in our estimations.

We would need 10 <u>billion</u> samples to get the same accuracy!

Email threads

A simple email thread (that's not very hard to do...)

Threading Machine Generated Email

Ailon, Karnin, Maarek, Liberty, Threading Machine Generated Email, WSDM 2013

Threading Machine Generated Email

Threading Machine Generated Email

Streaming quantiles

Manku, Rajagopalan, Lindsay. Random sampling techniques for space efficient online computation of order statistics of large datasets.
Munro, Paterson. Selection and sorting with limited storage.
Greenwald, Khanna. Space-efficient online computation of quantile summaries.
Wang, Luo, Yi, Cormode. Quantiles over data streams: An experimental study.
Greenwald, Khanna. Quantiles and equidepth histograms over streams.
Agarwal, Cormode, Huang, Phillips, Wei, Yi. Mergeable summaries.
Felber, Ostrovsky. A randomized online quantile summary in O((1/ε) log(1/ε)) words.
Lang, Karnin, Liberty, Optimal Quantile Approximation in Streams.

Problem Definition

Sampling $ilde{O}(1/arepsilon^2)$ values gives |R'-R|<arepsilon n can we do better?

Stores k stream entries

The buffer sorts k stream entries

Deletes every other item

And outputs the rest with double the weight

Repeat n/k time until the end of the stream

|R'(x) - R(x)| < n/k

Manku-Rajagopalan-Lindsay (MRL) sketch

 $|R'(x) - R(x)| \le n \log_2(n)/k$

Manku-Rajagopalan-Lindsay (MRL) sketch

If we set $k = \log_2(n)/arepsilon$

We get
$$|R'(x) - R(x)| \leq \varepsilon n$$

And we maintain only $\log_2^2(n)/\varepsilon$ items from the stream!

Greenwald-Khanna (GK) sketch

Uses a completely different construction

It gets
$$|R'(x) - R(x)| \le \varepsilon n$$

And maintains only $\,O(\log(n)/arepsilon)\,$ items from the stream!

Agarwal, Cormode, Huang, Phillips, Wei, Yi (1)

Reduces space usage to $\log^2(1/arepsilon)/arepsilon$ items from the stream. $ilde{}$

Agarwal, Cormode, Huang, Phillips, Wei, Yi (2)

Lang, Karnin, Liberty (1)

Reduces space usage to $\sqrt{\log(1/\varepsilon)}/\varepsilon$ items from the stream.

Lang, Karnin, Liberty (2)

Some experimental results

Count Distinct (Demo Only)

GitHub, Inc. [US] https://github.com/datasketches

sketches-core

Core Sketch Library.

🔵 Java 🔺 415 💡 119 Updated a day ago

mm MA.

Q 🕁

Assume you need to estimate the number of **unique** numbers in a file

In this one, row i tasks a value from [0,i] uniformly at random.

Some stats: there are 10,000,000 such numbers in this ~76Mb file.

>>time wc -lc data.csv
10000000 76046666 data.csv

real 0m0.101s user 0m0.072s sys 0m0.021s

Reading the file take ~1/10 seconds. We don't foresee IO being an issue.

To count the number of distinct items you might try this:

>>sort data.csv | uniq | wc -l

However, it is faster to have "uniqify" while sorting.

>>sort data.csv -u | wc -l

Still, most of the time is spent on comparing strings....

```
>>sort data.csv -u -n -S 100% | wc -l
```

This is much better!

This is the way to do this with the sketching library

>>sketch uniq data.csv >>time sketch uniq data.csv Too fast to use the system monitor UI... Estimate : 4974249 **Upper Bound : 5116569** It uses ~ 32k of memory! Lower Bound : 4835874 real 0m1.527s user 0m1.506s sys 0m0.152s

Thank you!

