Streaming Quantiles

Edo Liberty
Principal Scientist
Amazon Web Services
Amazon Kinesis Analytics

Get actionable insights from streaming data in real-time.
Streaming Quantiles

Manku, Rajagopalan, Lindsay. Random sampling techniques for space efficient online computation of order statistics of large datasets.
Munro, Paterson. Selection and sorting with limited storage.
Greenwald, Khanna. Space-efficient online computation of quantile summaries.
Wang, Luo, Yi, Cormode. Quantiles over data streams: An experimental study.
Greenwald, Khanna. Quantiles and equidepth histograms over streams.
Agarwal, Cormode, Huang, Phillips, Wei, Yi. Mergeable summaries.
Felber, Ostrovsky. A randomized online quantile summary in $O((1/\varepsilon) \log(1/\varepsilon))$ words.
Lang, Karnin, Liberty, Optimal Quantile Approximation in Streams.
Problem Definition

Create a sketch for R' such that $|R'(x) - R(x)| \leq \varepsilon n$.

$R(\square) = 0.6 \cdot n$
Solutions

• Uniform sampling
 ✔ Fast and simple ✔ Fully mergeable ✗ Space $\tilde{O}(1/\varepsilon^2)$

• Greenwald Khanna (GK) sketch
 ✗ Slow, complex ✗ Not mergeable ✔ Space $\log(n)/\varepsilon$

• Felber-Ostrovsky, combines sampling and GK (2015)
 ✗ Slow, complex ✗ Not mergeable ✔ Space $\log(1/\varepsilon)/\varepsilon$

Previously conjectured space optimal for all algorithms.
$\log(1/\varepsilon)/\varepsilon$ lower bound for deterministic algorithms by Hung and Ting 2010.
Solutions cont’

- Uniform sampling
 - ✔ Fast, simple
 - ✔ Fully mergeable
 - ✗ Space $\tilde{O}(1/\varepsilon^2)$

- Greenwald Khanna (GK) sketch
 - ✗ Slow, complex
 - ✗ Not mergeable
 - ✔ Space $\log(n)/\varepsilon$

- Felber-Ostrovsky, combines sampling and GK (2015)
 - ✗ Slow, complex
 - ✗ Not mergeable
 - ✔ Space $\log(1/\varepsilon)/\varepsilon$

- Manku-Rajagopalan-Lindsay (MRL)
 - ✔ Fast simple
 - ✔ Fully mergeable
 - ✗ Space $\log^2(n)/\varepsilon$

- Agarwal, Cormode, Huang, Phillips, Wei, Yi
 - ✗ Fast, complex
 - ✔ Fully mergeable
 - ✔ Space $\log^{3/2}(1/\varepsilon)/\varepsilon$

Buffer based solutions
The basic buffer idea

Buffer of size \(k \)
The basic buffer idea

Stores k stream entries

```
3
0
7
4
1
5
```
The basic buffer idea

The buffer sorts k stream entries
The basic buffer idea

Deletes every other item
The basic buffer idea

And outputs the rest with double the weight

5 3 0
The basic buffer idea

\[R(x) = 2 \]

\[R' (x) = 2 \]

\[R(x) = 5 \]

\[R' (x) = 6 \]

\[R' (x) = 2 \]

\[R' (x) = 4 \]
The basic buffer idea

Repeat n/k time until the end of the stream

$|R'(x) - R(x)| < n/k$
Manku-Rajagopalan-Lindsay (MRL) sketch

\[H = \log_2(n) \text{ Buffers of size } k \]

\[|R'(x) - R(x)| \leq \frac{n}{k} \cdot \log_2(n) \]
Manku-Rajagopalan-Lindsay (MRL) sketch

If we set $k = \log_2(n)/\varepsilon$ we get $|R'(x) - R(x)| \leq \varepsilon n$

while maintaining at most $H \cdot k \leq \log_2^2(n)/\varepsilon$ stream items.

Manku-Rajagopalan-Lindsay (MRL) sketch

- ✔ Fast, Simple
- ✔ Fully mergeable
- ✗ Space
Agarwal, Cormode, Huang, Phillips, Wei, Yi (1)

\[
\log(1/\varepsilon) \text{ Buffers of size } k
\]

start sampling after \(O(1/\varepsilon^2)\) items

\[
\frac{\log^2(1/\varepsilon)}{\varepsilon}
\]

Reduces space usage to \(\frac{\log^2(1/\varepsilon)}{\varepsilon}\) items from the stream.
$R(x) = 1$

\begin{align*}
R'(x) &= 2 \\
5 &\quad 7
\end{align*}

\begin{align*}
R'(x) &= 0 \\
5 &\quad 7
\end{align*}

$E[R'(x)] = R(x)$

$R'(x)$ is a random variable now and

Reduces space usage to $\log^{3/2}(1/\varepsilon)/\varepsilon$ items from the stream.
Recap

- **Uniform sampling**
 - ✔ Fast, simple
 - ✔ Fully mergeable
 - ✗ Space $\tilde{O}(1/\epsilon^2)$

- **Greenwald Khanna (GK) sketch**
 - ✗ Slow, complex
 - ✗ Not mergeable
 - ✔ Space $\log(n)/\epsilon$

- **Felber-Ostrovsky, combines sampling and GK (2015)**
 - ✗ Slow, complex
 - ✗ Not mergeable
 - ✔ Space $\log(1/\epsilon)/\epsilon$

- **Manku-Rajagopalan-Lindsay (MRL)**
 - ✔ Fast, simple
 - ✔ Fully mergeable
 - ✔ Space $\log^2(n)/\epsilon$

- **Agarwal, Cormode, Huang, Phillips, Wei, Yi**
 - ✗ Fast, complex
 - ✔ Fully mergeable
 - ✔ Space $\log^{3/2}(1/\epsilon)/\epsilon$
Our goal

- Uniform sampling
 ✔ Fast, simple ✔ Fully mergeable ❌ Space $\tilde{O}(1/\varepsilon^2)$

- Greenwald Khanna (GK) sketch
 ❌ Slow, complex ❌ Not mergeable ✔ Space $\log(n)/\varepsilon$

- Felber-Ostrovsky, combines sampling and GK (2015)
 ❌ Slow, complex ❌ Not mergeable ✔ Space $\log(1/\varepsilon)/\varepsilon$

- Manku-Rajagopalan-Lindsay (MRL)
 ✔ Fast, simple ✔ Fully mergeable ❌ Space $\log^2(n)/\varepsilon$

- Agarwal, Cormode, Huang, Phillips, Wei, Yi
 ❌ Fast, complex ✔ Fully mergeable ✔ Space $\log^{3/2}(1/\varepsilon)/\varepsilon$

- Karnin, Lang, Liberty
 ✔ Fast, simple ✔ Fully mergeable ✔ Space $\log(1/\varepsilon)/\varepsilon$
Observation

The first buffers contribute very little to the error. They are “too good”.

\[h = H \quad \cdots \quad h = 2 \quad h = 1 \]

\[w_h = 2^{h-1} \]

Weight of items in the level

\[m_h = 2^{H-h-1} \]

Number of compactions
Idea

Let buffers shrink at-most-exponentially

Let buffers shrink at-most-exponentially

\[k_h \geq k_c^H - h \]

\[w_h = 2^{h-1} \]

\[H \leq \log(n/ck) + 2 \]

\[m_h \leq (2/c)^{H-h-1} \]

Number of compactions

h = H
Analysis

\(R(h, x) \) the rank of \(x \) among

1. The items yielded by the compactor at height \(h \)
2. All the items stored in the compactors of heights \(h' \leq h \)

Claim, for \(C = c^2(2c - 1) \)

\[
\Pr \left[|R(x, H') - R(x)| \geq \varepsilon n \right] \leq 2 \exp \left(-C \varepsilon^2 k^2 2^{2(H-H')} \right)
\]

Proof

Use Hoeffding’s inequality on \(\sum_{h=1}^{H} [R(x, h) - R(x, h - 1)] \)
Solution 1

Set $c = 2/3$ and $k_h = \lceil kc^{H-h} \rceil + 1$

- Karnin, Lang, Liberty (1)
 - Fast, simple
 - Fully mergeable
 - Space $\sqrt{\log(1/\varepsilon)}/\varepsilon$

Better than previously conjectured optimal!

- $\log(n)$ exponentially decreasing capacity buffers
- Sampler replaces all buffers of size 2
Solution 2 (KLL + MRL)

Set $c = 2/3$ and $k_h = \left\lfloor kc^H - h \right\rfloor + 1$ except that the top $\log \log(1/\varepsilon)$ buffers all have capacity k.

- Karnin, Lang, Liberty (2)
 - ✅ Fast, simple
 - ✅ Fully mergeable
 - ✅ Space $\log^2 \log(1/\varepsilon) / \varepsilon$

Buffers of capacity k

$\log \log(1/\varepsilon)$

$\log(n)$ exponentially decreasing capacity buffers

Sampler replaces all buffers of size 2
Solution 3 (KLL + GK)

Set $c = 2/3$ and $k_h = \lceil kc^{H-h} \rceil + 1$ replace the top $\log \log (1/\varepsilon)$ with a GK sketch. k

- Karnin, Lang, Liberty (3)
- Fast, simple ✗
- Fully mergeable ✗
- Space $\log \log (1/\varepsilon) / \varepsilon$

GK sketch replaces top $\log \log (1/\varepsilon)$ levels

$log(n)$ exponentially decreasing capacity buffers

Sampler replaces all buffers of size 2
Count Distinct (Demo Only)

sketches-core
Core Sketch Library.

- Java
- 415
- 119
- Updated a day ago

[Yahoo!](https://www.yahoo.com) [Druid](https://druid.io) [Splice Machine](https://splice-machine.com) [Amazon Web Services](https://aws.amazon.com)
Assume you need to estimate the distribution of numbers in a file

```
$ head data.csv
0
1
0
0
3
0
2
3
7
3
3
2
```

In this one, row i tasks a value from $[0,i]$ uniformly at random.
Some stats: there are 10,000,000 such numbers in this ~76Mb file.

```
$ time wc -lc data.csv
 10000000 76046666 data.csv
```

real 0m0.101s
user 0m0.072s
sys 0m0.021s

Reading the file take ~1/10 seconds. We don’t foresee IO being an issue.
In python it looks like this:

```python
$ cat quantiles.py
import sys
ints = sorted([int(x) for x in sys.stdin])
for i in range(0, len(ints), int(len(ints)/100)):
    print(str(ints[i]))
```

$ time cat data.csv | python quantiles.py > /dev/null

real 0m13.406s
user 0m12.937s
sys 0m0.407s
This is the way to do this with the sketching library

```bash
$ time cat data.csv | sketch rank
```

```bash
$ time cat data.csv | sketch rank > /dev/null
real 0m1.495s
user 0m1.878s
sys 0m0.141s
```

Too fast to use the system monitor UI...

It uses ~ 4k of memory!
exact and approximate quantiles

exact vs approximate quantiles

- approximate quantiles
- exact quantiles
Some experimental results

Lazy KLL versus (Sketch Library and Two Variants)

Error

Sketch Library
Variant 1
Variant 2
Lazy KLL

Number of Items in Randomly Permuted Stream

Space Used For Storing Samples

Sketch Library
Variant 1
Variant 2
Lazy KLL

Number of Items in Randomly Permuted Stream
Thank you!