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Problem	Definition

n

0 n

R( ) = 0.6 · n

Create	a	sketch	for									such	thatR0 |R0(x)�R(x)|  "n



• Uniform	sampling
Fast	and	simple														Fully	mergeable Space

• Greenwald	Khanna	(GK)	sketch
Slow,	complex																	Not	mergeable Space	

• Felber-Ostrovsky,	combines	sampling	and	GK	(2015)
Slow,	complex																	Not	mergeable Space	

Solutions

log(1/")/✏

Õ(1/"2)

log(n)/"

Previously	conjectured	space	optimal	for	all	algorithms.
lower	bound	for	deterministic algorithms	by	Hung	and	Ting	2010.log(1/")/✏



• Uniform	sampling
Fast,	simple																					Fully	mergeable Space

• Greenwald	Khanna	(GK)	sketch
Slow,	complex																	Not	mergeable Space	

• Felber-Ostrovsky,	combines	sampling	and	GK	(2015)
Slow,	complex																	Not	mergeable Space

• Manku-Rajagopalan-Lindsay	(MRL)
Fast	simple																				Fully	mergeable Space

• Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi
Fast,	complex																	Fully	mergeable Space

Solutions	cont’

log(1/")/✏

Õ(1/"2)

log(n)/"
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Buffer	based	solutions



The	basic	buffer	idea
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Buffer	of	size	k



The	basic	buffer	idea

Stores	k	stream	entries
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The	basic	buffer	idea

The	buffer	sorts	k	stream	entries
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The	basic	buffer	idea

Deletes	every	other	item
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The	basic	buffer	idea

And	outputs	the	rest	
with	double	the	weight

035



The	basic	buffer	idea
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The	basic	buffer	idea

Repeat													time	until	
the	end	of	the	stream

0

|R0(x)�R(x)| < n/k

nn/2

n/k

1 0 355



n

Buffers	of	size	 k

1 0 35

Manku-Rajagopalan-Lindsay	(MRL)	sketch

|R0
(x)�R(x)|  n/k · log2(n)

H = log2(n)



k = log2(n)/"If	we	set																																					we	get	

while	maintaining	at	most																																											stream	items.

|R0(x)�R(x)|  "n

Manku-Rajagopalan-Lindsay	(MRL)	sketch

H · k  log

2
2(n)/"

Manku-Rajagopalan-Lindsay	(MRL)	sketch
Fast,	Simple																					Fully	mergeable Space	



Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi		(1)

Buffers	of	size	 klog(1/")

start	sampling	
after																					itemsO(1/"2)

log

2
(1/")/"Reduces	space	usage	to																																					items	from	the	stream.

1 0 35



Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi		(2)

E[R0(x)] = R(x)

R

0(x) is	a	random	
variable	now	and

R(x) = 1

R

0(x) = 2

R

0(x) = 0

x

Reduces	space	usage	to																																					items	from	the	stream.log

3/2
(1/")/"
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• Uniform	sampling
Fast,	simple																					Fully	mergeable Space

• Greenwald	Khanna	(GK)	sketch
Slow,	complex																	Not	mergeable Space	

• Felber-Ostrovsky,	combines	sampling	and	GK	(2015)
Slow,	complex																	Not	mergeable Space

• Manku-Rajagopalan-Lindsay	(MRL)
Fast,	simple																				Fully	mergeable Space

• Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi
Fast,	complex																		Fully	mergeable Space

Recap

log(1/")/✏

Õ(1/"2)

log(n)/"
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• Uniform	sampling
Fast,	simple																					Fully	mergeable Space

• Greenwald	Khanna	(GK)	sketch
Slow,	complex																	Not	mergeable Space	

• Felber-Ostrovsky,	combines	sampling	and	GK	(2015)
Slow,	complex																	Not	mergeable Space

• Manku-Rajagopalan-Lindsay	(MRL)
Fast,	simple																				Fully	mergeable Space

• Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi
Fast,	complex																		Fully	mergeable Space

• Karnin,	Lang,	Liberty
Fast,	simple																				Fully	mergeable Space

Our	goal
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Observation

h = H

The	first	buffers	contribute	very	little	to	
the	error.	They	are	“too	good”.

wh = 2h�1

Number	of	
compactions

Weight	of	items	
in	the	level

h = 2 h = 1....

mh = 2H�h�1



Idea

h = H

h = 2
h = 1

kh � kcH�hLet	buffers	shrink	at-most-exponentially

wh = 2h�1

H  log(n/ck) + 2

mh  (2/c)H�h�1

Number	of	
compactions

TBD	later



Pr [|R(x,H 0
)�R(x)| � "n]  2 exp

⇣
�C"2k222(H�H0)

⌘

the	rank	of		 among	
1. The	items	yielded	by	the	compactor	at	height	
2. All	the	items	stored	in	the	compactors	of	heights h0  h

h
R(h, x) x

Claim,	for	

Proof
Use	Hoeffding’s inequality	on

HX

h=1

[R(x, h)�R(x, h� 1)]

C = c2(2c� 1)

Analysis



Set																											and

Solution	1

kh = dkcH�he+ 1c = 2/3
• Karnin,	Lang,	Liberty	(1)

Fast,	simple																				Fully	mergeable Space
p

log(1/")/"

exponentially	
decreasing	capacity	buffers

log(n) sampler	replaces	
all buffers	of	size	2

Better	than	previously
conjectured	optimal!



exponentially	
decreasing	capacity	buffers

Set																											and																																																				except	that	the	
top																																buffers	all	have	capacity						.	

Solution	2	(KLL	+	MRL)

kh = dkcH�he+ 1c = 2/3

• Karnin,	Lang,	Liberty	(2)
Fast,	simple																				Fully	mergeable Space

log log(1/") k

log

2
log(1/")/"

log log(1/")
Buffers	of	capacity	k

log(n) sampler	replaces	
all buffers	of	size	2



• Karnin,	Lang,	Liberty	(3)
Fast,	simple																				Fully	mergeable Space

exponentially	
decreasing	capacity	buffers

Set																											and																																																				replace	the	
top																															with	a	GK	sketch

Solution	3	(KLL	+	GK)

kh = dkcH�he+ 1c = 2/3
log log(1/") k

log log(1/")
GK	sketch	replaces	

top																										levels
log(n) sampler	replaces	

all buffers	of	size	2

GK	Sketch

log log(1/")/"



Count	Distinct
(Demo	Only)



$ head data.csv
0
1
0
3
0
2
3
7
3
2

In	this	one,	row	i tasks	a	value	from	[0,i]	uniformly	at	random.

Assume	you	need	to	estimate	the	distribution	of	numbers	in	a	file



$ time wc -lc data.csv
10000000 76046666 data.csv

real 0m0.101s
user 0m0.072s
sys 0m0.021s

Reading	the	file	take	~1/10	seconds.	We	don’t	foresee	IO	being	an	issue.

Some	stats:	there	are	10,000,000	such	numbers	in	this	~76Mb	file.



$ time cat data.csv | 
python quantiles.py > 
/dev/null

real 0m13.406s
user 0m12.937s
sys 0m0.407s

In	python	it	looks	like	this:

$ cat quantiles.py
import sys
ints = sorted([int(x) for x in sys.stdin])
for i in range(0,len(ints),int(len(ints)/100)):

print(str(ints[i]))



$ time cat data.csv | 
sketch rank > /dev/null

real 0m1.495s
user 0m1.878s
sys 0m0.141s

This	is	the	way	to	do	this	with	the	sketching	library

$ time cat data.csv | sketch rank

Too	fast	to	use	the	system	
monitor	UI...

It	uses	~	4k	of	memory!
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Some	experimental	results	



Thank	you!


