Streaming Quantiles

Edo Liberty
Principal Scientist
Amazon Web Services

Amazon Kinesis Analytics

Get actionable insights from streaming data in real-time.

Streaming Quantiles

Manku, Rajagopalan, Lindsay. Random sampling techniques for space efficient online computation of order statistics of large datasets.
Munro, Paterson. Selection and sorting with limited storage.
Greenwald, Khanna. Space-efficient online computation of quantile summaries.
Wang, Luo, Yi, Cormode. Quantiles over data streams: An experimental study.
Greenwald, Khanna. Quantiles and equidepth histograms over streams.
Agarwal, Cormode, Huang, Phillips, Wei, Yi. Mergeable summaries.
Felber, Ostrovsky. A randomized online quantile summary in $\mathrm{O}((1 / \varepsilon) \log (1 / \varepsilon))$ words.
Lang, Karnin, Liberty, Optimal Quantile Approximation in Streams.

Problem Definition

$\square \square \square$

Create a sketch for R^{\prime} such that $\left|R^{\prime}(x)-R(x)\right| \leq \varepsilon n$

Solutions

- Uniform sampling
\checkmark Fast and simple
Fully mergeable
\mathbf{X} Space $\tilde{O}\left(1 / \varepsilon^{2}\right)$
- Greenwald Khanna (GK) sketch \mathbf{X} Slow, complex $\quad \mathbf{X}$ Not mergeable
\times Space $\log (n) / \varepsilon$
- Felber-Ostrovsky, combines sampling and GK (2015)
\mathbf{X} Slow, complex $\quad \mathbf{X}$ Not mergeable \quad Space $\log (1 / \varepsilon) / \epsilon$

Previously conjectured space optimal for all algorithms.

$\log (1 / \varepsilon) / \epsilon$ lower bound for deterministic algorithms by Hung and Ting 2010.

Solutions cont'

- Uniform sampling
\checkmark Fast, simple
Fully mergeable
X Space $\tilde{O}\left(1 / \varepsilon^{2}\right)$
- Greenwald Khanna (GK) sketch

X Slow, complex X Not mergeable \quad Space $\log (n) / \varepsilon$

- Felber-Ostrovsky, combines sampling and GK (2015)

X Slow, complex $\quad \mathbf{~ N o t ~ m e r g e a b l e ~} \quad$ space $\log (1 / \varepsilon) / \epsilon$

- Manku-Rajagopalan-Lindsay (MRL)Fast simple
Fully mergeable * Space $\log ^{2}(n) / \varepsilon$
- Agarwal, Cormode, Huang, Phillips, Wei, Yi
* Fast, complex \quad Fully mergeable
$*$ Space $\log ^{3 / 2}(1 / \varepsilon) / \varepsilon$

The basic buffer idea

Buffer of size k

The basic buffer idea

Stores k stream entries

3
0
7
4
1
5

The basic buffer idea

The buffer sorts k stream entries

7
5
4
3
1
0

The basic buffer idea

Deletes every other item

The basic buffer idea

And outputs the rest
with double the weight

The basic buffer idea

The basic buffer idea

> Repeat n / k time until the end of the stream

$$
\left|R^{\prime}(x)-R(x)\right|<n / k
$$

Manku-Rajagopalan-Lindsay (MRL) sketch
$H=\log _{2}(n)$ Buffers of size k

$$
\left|R^{\prime}(x)-R(x)\right| \leq n / k \cdot \log _{2}(n)
$$

Manku-Rajagopalan-Lindsay (MRL) sketch

If we set $k=\log _{2}(n) / \varepsilon$ we get $\left|R^{\prime}(x)-R(x)\right| \leq \varepsilon n$
while maintaining at most $H \cdot k \leq \log _{2}^{2}(n) / \varepsilon$ stream items.

Manku-Rajagopalan-Lindsay (MRL) sketch
Fast, Simple
Fully mergeable

Agarwal, Cormode, Huang, Phillips, Wei, Yi (1)

Reduces space usage to $\log ^{2}(1 / \varepsilon) / \varepsilon$ items from the stream.

Agarwal, Cormode, Huang, Phillips, Wei, Yi (2)

Reduces space usage to $\log ^{3 / 2}(1 / \varepsilon) / \varepsilon$ items from the stream.

Recap

- Uniform sampling
\checkmark Fast, simple
Fully mergeable
X Space $\tilde{O}\left(1 / \varepsilon^{2}\right)$
- Greenwald Khanna (GK) sketch

X Slow, complex X Not mergeable

* Space $\log (n) / \varepsilon$
- Felber-Ostrovsky, combines sampling and GK (2015)

X Slow, complex \quad Not mergeable \quad Space $\log (1 / \varepsilon) / \epsilon$

- Manku-Rajagopalan-Lindsay (MRL)
\checkmark Fast, simple Fully mergeable
* Space $\log ^{2}(n) / \varepsilon$
- Agarwal, Cormode, Huang, Phillips, Wei, Yi
* Fast, complex Fully mergeable
$*$ Space $\log ^{3 / 2}(1 / \varepsilon) / \varepsilon$

Our goal

- Uniform sampling

Fast, simple
Fully mergeable
X Space $\tilde{O}\left(1 / \varepsilon^{2}\right)$

- Greenwald Khanna (GK) sketch

X Slow, complex X Not mergeable

* Space $\log (n) / \varepsilon$
- Felber-Ostrovsky, combines sampling and GK (2015)

X Slow, complex X Not mergeable \quad Space $\log (1 / \varepsilon) / \epsilon$

- Manku-Rajagopalan-Lindsay (MRL)
\checkmark Fast, simple Fully mergeable
* Space $\log ^{2}(n) / \varepsilon$
- Agarwal, Cormode, Huang, Phillips, Wei, Yi

F Fast, complex Fully mergeable
$*$ Space $\log ^{3 / 2}(1 / \varepsilon) / \varepsilon$

- Karnin, Lang, Liberty

Fast, simple
Fully mergeable
Space $\log (1 / \varepsilon) / \epsilon$

Observation

The first buffers contribute very little to the error. They are "too good".

Weight of items in the level

$$
w_{h}=2^{h-1}
$$

$h=H \quad \cdots \quad h=2 h=1$

Idea

Let buffers shrink at-most-exponentially

$$
k_{h} \geq k c^{\text {TBD later }}
$$

$$
\begin{aligned}
& \square \underbrace{}_{h=2} \begin{array}{c}
w_{h}=2^{h-1} \\
h \leq \log (n / c k)+2 \\
h=1 \\
h=H
\end{array} \begin{array}{c}
\text { Number of } \\
\text { compactions }
\end{array}
\end{aligned}
$$

Analysis

$R(h, x)$ the rank of x among

1. The items yielded by the compactor at height h
2. All the items stored in the compactors of heights $h^{\prime} \leq h$

Claim, for $C=c^{2}(2 c-1)$

$$
\operatorname{Pr}\left[\left|R\left(x, H^{\prime}\right)-R(x)\right| \geq \varepsilon n\right] \leq 2 \exp \left(-C \varepsilon^{2} k^{2} 2^{2\left(H-H^{\prime}\right)}\right)
$$

Proof
Use Hoeffding's inequality on $\sum_{h=1}^{H}[R(x, h)-R(x, h-1)]$

Solution 1

Set $c=2 / 3 \quad$ and $\quad k_{h}=\left\lceil k c^{H-h}\right\rceil+1$

- Karnin, Lang, Liberty (1)

Fast, simple \quad Fully mergeable

Solution 2 (KLL + MRL)

Set $c=2 / 3$ and $k_{h}=\left\lceil k c^{H-h}\right\rceil+1$ except that the top $\log \log (1 / \varepsilon)$ buffers all have capacity k.

- Karnin, Lang, Liberty (2)

Solution 3 (NL + GK)

Set $c=2 / 3 \quad$ and $\quad k_{h}=\left\lceil k c^{H-h}\right\rceil+1$ replace the top $\log \log (1 / \varepsilon)$ with a GK sketch

- Karnin, Lang, Liberty (3)

X Fast, simple
top $\log \log (1 / \varepsilon)$ levels

X Fully mergeable

$\log (n)$ exponentially decreasing capacity buffers

k c

space Optimal! Space $\log \log (1 / \varepsilon) / \varepsilon$

sampler replaces all buffers of size 2

Count Distinct (Demo Only)

```
O GitHub,Inc.[US] https://github.com/datasketches
sketches-core
Core Sketch Library.
O Java \(\star 415\) \&f 119 Updated a day ago


Assume you need to estimate the distribution of numbers in a file
```

\$ head data.csv
O
1
0
3
0
2
3
7
3
2

```

In this one, row \(i\) tasks a value from \([0, i]\) uniformly at random.

Some stats: there are 10,000,000 such numbers in this ~76Mb file.
```

\$ time wc -lc data.csv
10000000 76046666 data.csv
real 0m0.101s
user 0m0.072s
sys 0m0.021s

```

Reading the file take \(\sim 1 / 10\) seconds. We don't foresee IO being an issue.

\section*{In python it looks like this:}
```

\$ cat quantiles.py
import sys
ints = sorted([int(x) for x in sys.stdin])
for i in range(0,len(ints),int(len(ints)/100)):
print(str(ints[i]))

```


This is the way to do this with the sketching library
```

\$ time cat data.csv | sketch rank

```
```

\$ time cat data.csv |
sketch rank > /dev/null
real 0m1.495s
user 0m1.878s
sys 0m0.141s

```

Too fast to use the system monitor Ul...

It uses ~ 4 k of memory!


\section*{Some experimental results}

Lazy KLL versus (Sketch Library and Two Variants)


Lazy KLL versus (Sketch Library and Two Variants)


Thank you!
amazon webservices"```

