
Streaming	Quantiles

Edo	Liberty
Principal	Scientist	
Amazon	Web	Services

Streaming	Quantiles

Manku,	Rajagopalan,	Lindsay.	Random	sampling	techniques	for	space	efficient	
online	computation	of	order	statistics	of	large	datasets.
Munro,	Paterson.	Selection	and	sorting	with	limited	storage.
Greenwald,	Khanna.	Space-efficient	online	computation	of	quantile	summaries.
Wang,	Luo,	Yi,	Cormode.	Quantiles	over	data	streams:	An	experimental	study.
Greenwald,	Khanna.	Quantiles	and	equidepth histograms	over	streams.
Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi.	Mergeable summaries.
Felber,	Ostrovsky.	A	randomized	online	quantile	summary	in	O((1/ε)	log(1/ε))	words.
Lang,	Karnin,	Liberty,	Optimal	Quantile	Approximation	in	Streams.

Problem	Definition

n

0 n

R() = 0.6 · n

Create	a	sketch	for									such	thatR0 |R0(x)�R(x)| "n

• Uniform	sampling
Fast	and	simple														Fully	mergeable Space

• Greenwald	Khanna	(GK)	sketch
Slow,	complex																	Not	mergeable Space	

• Felber-Ostrovsky,	combines	sampling	and	GK	(2015)
Slow,	complex																	Not	mergeable Space	

Solutions

log(1/")/✏

Õ(1/"2)

log(n)/"

Previously	conjectured	space	optimal	for	all	algorithms.
lower	bound	for	deterministic algorithms	by	Hung	and	Ting	2010.log(1/")/✏

• Uniform	sampling
Fast,	simple																					Fully	mergeable Space

• Greenwald	Khanna	(GK)	sketch
Slow,	complex																	Not	mergeable Space	

• Felber-Ostrovsky,	combines	sampling	and	GK	(2015)
Slow,	complex																	Not	mergeable Space

• Manku-Rajagopalan-Lindsay	(MRL)
Fast	simple																				Fully	mergeable Space

• Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi
Fast,	complex																	Fully	mergeable Space

Solutions	cont’

log(1/")/✏

Õ(1/"2)

log(n)/"

log

2
(n)/"

log

3/2
(1/")/"

Buffer	based	solutions

The	basic	buffer	idea

1 0 35 4 7

Buffer	of	size	k

The	basic	buffer	idea

Stores	k	stream	entries

1

0
3

5

4
7

The	basic	buffer	idea

The	buffer	sorts	k	stream	entries

1
0

3

5
4

7

The	basic	buffer	idea

Deletes	every	other	item

1
0

3

5
4

7

The	basic	buffer	idea

And	outputs	the	rest	
with	double	the	weight

035

The	basic	buffer	idea

0

0

x x

1 54 7

1

3

3

4

5

7

R(x) = 2

R

0(x) = 2

R

0(x) = 2

R(x) = 5

R

0(x) = 4

R

0(x) = 6

The	basic	buffer	idea

Repeat													time	until	
the	end	of	the	stream

0

|R0(x)�R(x)| < n/k

nn/2

n/k

1 0 355

n

Buffers	of	size	 k

1 0 35

Manku-Rajagopalan-Lindsay	(MRL)	sketch

|R0
(x)�R(x)| n/k · log2(n)

H = log2(n)

k = log2(n)/"If	we	set																																					we	get	

while	maintaining	at	most																																											stream	items.

|R0(x)�R(x)| "n

Manku-Rajagopalan-Lindsay	(MRL)	sketch

H · k log

2
2(n)/"

Manku-Rajagopalan-Lindsay	(MRL)	sketch
Fast,	Simple																					Fully	mergeable Space	

Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi		(1)

Buffers	of	size	 klog(1/")

start	sampling	
after																					itemsO(1/"2)

log

2
(1/")/"Reduces	space	usage	to																																					items	from	the	stream.

1 0 35

Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi		(2)

E[R0(x)] = R(x)

R

0(x) is	a	random	
variable	now	and

R(x) = 1

R

0(x) = 2

R

0(x) = 0

x

Reduces	space	usage	to																																					items	from	the	stream.log

3/2
(1/")/"

5 7

5

7

• Uniform	sampling
Fast,	simple																					Fully	mergeable Space

• Greenwald	Khanna	(GK)	sketch
Slow,	complex																	Not	mergeable Space	

• Felber-Ostrovsky,	combines	sampling	and	GK	(2015)
Slow,	complex																	Not	mergeable Space

• Manku-Rajagopalan-Lindsay	(MRL)
Fast,	simple																				Fully	mergeable Space

• Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi
Fast,	complex																		Fully	mergeable Space

Recap

log(1/")/✏

Õ(1/"2)

log(n)/"

log

2
(n)/"

log

3/2
(1/")/"

• Uniform	sampling
Fast,	simple																					Fully	mergeable Space

• Greenwald	Khanna	(GK)	sketch
Slow,	complex																	Not	mergeable Space	

• Felber-Ostrovsky,	combines	sampling	and	GK	(2015)
Slow,	complex																	Not	mergeable Space

• Manku-Rajagopalan-Lindsay	(MRL)
Fast,	simple																				Fully	mergeable Space

• Agarwal,	Cormode,	Huang,	Phillips,	Wei,	Yi
Fast,	complex																		Fully	mergeable Space

• Karnin,	Lang,	Liberty
Fast,	simple																				Fully	mergeable Space

Our	goal

log(1/")/✏

Õ(1/"2)

log(n)/"

log

2
(n)/"

log

3/2
(1/")/"

log(1/")/✏

Observation

h = H

The	first	buffers	contribute	very	little	to	
the	error.	They	are	“too	good”.

wh = 2h�1

Number	of	
compactions

Weight	of	items	
in	the	level

h = 2 h = 1....

mh = 2H�h�1

Idea

h = H

h = 2
h = 1

kh � kcH�hLet	buffers	shrink	at-most-exponentially

wh = 2h�1

H log(n/ck) + 2

mh (2/c)H�h�1

Number	of	
compactions

TBD	later

Pr [|R(x,H 0
)�R(x)| � "n] 2 exp

⇣
�C"2k222(H�H0)

⌘

the	rank	of		 among	
1. The	items	yielded	by	the	compactor	at	height	
2. All	the	items	stored	in	the	compactors	of	heights h0 h

h
R(h, x) x

Claim,	for	

Proof
Use	Hoeffding’s inequality	on

HX

h=1

[R(x, h)�R(x, h� 1)]

C = c2(2c� 1)

Analysis

Set																											and

Solution	1

kh = dkcH�he+ 1c = 2/3
• Karnin,	Lang,	Liberty	(1)

Fast,	simple																				Fully	mergeable Space
p

log(1/")/"

exponentially	
decreasing	capacity	buffers

log(n) sampler	replaces	
all buffers	of	size	2

Better	than	previously
conjectured	optimal!

exponentially	
decreasing	capacity	buffers

Set																											and																																																				except	that	the	
top																																buffers	all	have	capacity						.	

Solution	2	(KLL	+	MRL)

kh = dkcH�he+ 1c = 2/3

• Karnin,	Lang,	Liberty	(2)
Fast,	simple																				Fully	mergeable Space

log log(1/") k

log

2
log(1/")/"

log log(1/")
Buffers	of	capacity	k

log(n) sampler	replaces	
all buffers	of	size	2

• Karnin,	Lang,	Liberty	(3)
Fast,	simple																				Fully	mergeable Space

exponentially	
decreasing	capacity	buffers

Set																											and																																																				replace	the	
top																															with	a	GK	sketch

Solution	3	(KLL	+	GK)

kh = dkcH�he+ 1c = 2/3
log log(1/") k

log log(1/")
GK	sketch	replaces	

top																										levels
log(n) sampler	replaces	

all buffers	of	size	2

GK	Sketch

log log(1/")/"

Count	Distinct
(Demo	Only)

$ head data.csv
0
1
0
3
0
2
3
7
3
2

In	this	one,	row	i tasks	a	value	from	[0,i]	uniformly	at	random.

Assume	you	need	to	estimate	the	distribution	of	numbers	in	a	file

$ time wc -lc data.csv
10000000 76046666 data.csv

real 0m0.101s
user 0m0.072s
sys 0m0.021s

Reading	the	file	take	~1/10	seconds.	We	don’t	foresee	IO	being	an	issue.

Some	stats:	there	are	10,000,000	such	numbers	in	this	~76Mb	file.

$ time cat data.csv |
python quantiles.py >
/dev/null

real 0m13.406s
user 0m12.937s
sys 0m0.407s

In	python	it	looks	like	this:

$ cat quantiles.py
import sys
ints = sorted([int(x) for x in sys.stdin])
for i in range(0,len(ints),int(len(ints)/100)):

print(str(ints[i]))

$ time cat data.csv |
sketch rank > /dev/null

real 0m1.495s
user 0m1.878s
sys 0m0.141s

This	is	the	way	to	do	this	with	the	sketching	library

$ time cat data.csv | sketch rank

Too	fast	to	use	the	system	
monitor	UI...

It	uses	~	4k	of	memory!

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

exact	and	approximate	quantiles

approximate	quantiles exact	quantiles

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 2000000 4000000 6000000 8000000 10000000

exact	vs	approximate	quantiles

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 100 1000 10000 100000 1e+06

E
rr

o
r

Number of Items in Randomly Permuted Stream

Lazy KLL versus (Sketch Library and Two Variants)

Sketch Library
Variant 1
Variant 2
Lazy KLL

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100 1000 10000 100000 1e+06

S
p
a
ce

 U
se

d
 F

o
r

S
to

ri
n
g
 S

a
m

p
le

s

Number of Items in Randomly Permuted Stream

Lazy KLL versus (Sketch Library and Two Variants)

Sketch Library
Variant 1
Variant 2
Lazy KLL

Some	experimental	results	

Thank	you!

