

Amazon SageMaker

Edo Liberty, Amazon Al Labs

Alex Smola, Zohar Karnin, Bing Xiang, Baris Cuskon, Ramesh Nallapati, Phillip Gautier, Madhav Jha, Ran Ding, Tim Januschowski, David Selinas, Bernie Wang, Jan Gasthaus, Laurence Rouesnel, Amir Sadoughi, Piali Das, Julio Delgado Mangas, Yury Astashonok, Can Balioglu, Saswata Chakravarty

- 1) ML Algorithms in The Cloud New Challenges
- 2) SageMaker Algorithms Architecture and Data Flow
- 3) Science of Streaming Algorithms Advantages and Challenges
- 4) SageMaker Algorithms Accurate, Fast, Scalable, and Easy to Use.

ML Algorithms in The Cloud – New Challenges

Lifecycle of a Machine Learning Project

Small Data - Machine Learning

Our Customers use ML at massive scale!

"Our data warehouse is 100TB and we are processing 2TB daily. We're running mostly gradient boosting (trees), LDA and K-Means clustering and collaborative filtering." Shahar Cizer Kobrinsky, VP Architecture

dataxu

"We process 3 million ad requests a second, 100,000 features per request. That's 250 trillion per day. Not your run of the mill Data science problem!" Bill Simmons, CTO

"We collect 160M events daily in the ML pipeline and run training over the last 15 davs and need it to complete in one hour. Effectively there's 100M features in the model" Valentino Volonghi, CTO

Large Scale Machine Learning

Large Scale Machine Learning

Cost vs. Time

aws

Cost vs. Time

aws

aws

aws

Model Selection

Incremental Training

Production Readiness

SageMaker Algorithms -Architecture and Data Flow

Streaming

Streaming

Incremental Training

Incremental Training

GPU/CPU

Distributed

aws

Parameter Server – distributed (k,v) store.

aws

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

aws

aws

Production Readiness

Data/Model Size

Production Readiness

Data/Model Size

Science of Streaming Algorithms – Advantages and Challenges

Simple Problems Are Unsolvable

Finding the exact median in a stream is impossible!

- After the seeing half the items, each one of them might still be the median.
- The algorithm must remember all of them.
- It cannot have a fixed memory footprint.

Gradient Descent

Frugal Streaming for Estimating Quantiles: One (or two) memory suffices: Qiang Ma, S. Muthukrishnan, Mark Sandler © 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SGD – Parameter Tuning

Frugal Streaming for Estimating Quantiles: One (or two) memory suffices: Qiang Ma, S. Muthukrishnan, Mark Sandler © 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SGD – Distribution Drift

Frugal Streaming for Estimating Quantiles: One (or two) memory suffices: Qiang Ma, S. Muthukrishnan, Mark Sandler © 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Median - Sampling Algorithm

Sampling Algorithm:

- 1) Reservoir Sample k points from the data
- 2) Return the median of the sample

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

aws

Median – Sketching Algorithm

Sketching Algorithm

- 1) Too complex to explain here...
- 2) Optimal Quantile Approximation in Streams; Zohar Karnin, Kevin Lang, Edo Liberty

SageMaker Algorithms – Accurate, Fast, Scalable, and Easy to Use.

Algorithms- Example Usage

Algorithm	Function	Example Usage
Linear Learner	Classification and	 Estimating click probability for online advisements (for a customer)
Boosted Decision Trees	regression, these are	 Directing a customer's inbound phone call to relevant agents
(XGBoost)	the most popular ML	 Deciding whether a login event is legitimate.
Factorization Machines	algorithms used today.	
K-means	Clustering	 Grouping similar events/document/images together
	Principal Component	 Reduce Dimensionality of data
PCA	Analysis	 Explore main factors/trends in data
	Allatysis	Visualization
Neural Topic Modelling	Topic Modeling	 Maps documents into distribution over topics
Spectral LDA	Topic Modeling	 Discover dominant topics in your text corpus
Blazing Text	Word Embedding	 Feature Engineering for text
DeerAD		 Predict the number of page views you'll get in an hour (and the
Беерак	Time-series Forecasting	number of servers you'll need to host them!)
Image Classification	Classification of Images	• Detect quality assurance issues in manufactured goods using images.
Sequence to Sequence	Learn mapping between	Translating text between different languages.
Sequence to Sequence	pairs of sequences	

Linear Learner

Regression: Estimate a real valued function

Binary Classification: Predict a 0/1 class

 $\hat{y} = \langle x, w \rangle + t$

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

 $\hat{y} = \begin{cases} 1 & \text{if } x \langle x, w \rangle \ge t \\ 0 & \text{otherwise} \end{cases}$

Linear Learner

>8x speedup over naïve parallel training!

Linear Learner

sagemaker-url

30 GB datasets for web-spam and web-url classification

sagemaker-spam

20

____other-url

25

____other-spam

30

aws

Boosted Decision Trees

XGBoost is one of the most commonly used implementations of boosted decision trees in the world.

It is now available in Amazon SageMaker!

dmlc **XGBoost**

Throughput vs. Number of Machines 1400 1200 1000 Throughput in MB/Sec 800 600 400 200 0 0 10 20 60 30 40 50 70 Number of Machines (C4.8xLarge)

Factorization Machines

$$\hat{y} = w_0 + \langle w_1, x \rangle + \sum_{i,j>i} x_i x_j \langle v_i, v_j \rangle$$

	Log_loss	F1 Score	Seconds	
SageMaker	0.494	0.277	820	
Other (10 Iter)	0.516	0.190	650	in Dollars
Other (20 Iter)	0.507	0.254	1300	Cost
Other (50 Iter)	0.481	0.313	3250	

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

aws

K-Means Clustering

K-Means Clustering

Method	Accurate?	Passes	Efficient Tuning	Comments
Lloyds [1]	Yes*	5-10	No	
K-Means ++ [2]	Yes	k+5 to k+10	No	scikit-learn
K-Means [3]	Yes	7-12	No	spark.ml
Online [4]	No	1	No	
Streaming [5,6]	No	1	No	Impractical
Webscale [7]	No	1	No	spark streaming
Coresets [8]	No	1	Yes	Impractical
SageMaker	Yes	1	Yes	

[1] Lloyd, IEEE TIT, 1982
[2] Arthur et. al. ACM-SIAM, 2007
[3] Bahmani et. al., VLDB, 2012
[4] Liberty et. al., 2015

[5] Shindler et. al, NIPS, 2011
[6] Guha et. al, IEEE Trans. Knowl. Data Eng. 2003
[7] Sculley, WWW, 2010
[8] Feldman et. al.

K-Means Clustering

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

aws

Neural Topic Modeling

• Perplexity vs. Number of Topic

(~200K documents, ~100K vocabulary)

Time Series Forecasting

		Mean absolute percentage error		P90 Loss	
		DeepAR	R	DeepAR	R
traffic Hourly occupancy bay area free	C rate of 963 ways	0.14	0.27	0.13	0.24
electric Electricity use homes over	ity of 370 time	0.07	0.11	0.08	0.09
pageviews Page view hits of websites	10k	0.32	0.32	0.44	0.31
	180k	0.32	0.34	0.29	NA
One h	our on	p2.xlarge	e, \$1		aw

Pipe Mode (launched May 23rd)

Job Execution Time

K-Means

aws

Using Amazon SageMaker Algorithms on AWS

From Amazon SageMaker Notebooks

	<pre>import boto3 import sagemaker</pre>
	<pre>sess = sagemaker.Session()</pre>
Hardware	<pre>pca = sagemaker.estimator.Estimator(containers[boto3.Session().region_name],</pre>
Parameters	sagemaker_session=sess) pca.set_hyperparamters(feature_dim=50000, num_components=10, subtract_mean=True, algorithm_mode='randomized', mini_batch_size=200)
Start Training ———	<pre>pca.fit({'train': s3_train_data})</pre>

Host model _____ pca_predictor = pca.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge')

From Command Line

	profile= <your_profile></your_profile>				
	arn_role= <your_arn_role></your_arn_role>				
	training_image=382416733822.dkr.ecr.us-east-1.amazonaws.com/kmeans:1				
	training_job_name=clutering_text_documents_`date '+%Y_%m_%d_%H_%M_%S'`				
	awsprofile $profile \$				
	region us-east-1 \setminus				
	sagemaker create-training-job \				
	training-job-name \$training_job_name \				
Algorithm	algorithm-specification TrainingImage=\$training_image,TrainingInputMode=File \				
	hyper-parameters k=10,feature_dim=1024,mini_batch_size=1000 \				
Input Data	role-arn \$arn_role \				
	input-data-config '{"ChannelName": "train", "DataSource": {"S3DataSource":{"S3DataType": "S3Prefix", "S3Uri": "s3://kmeans_demo/train", "S3DataDistributionType": "ShardedByS3Key"}}, "CompressionType": "None", "RecordWrapperType": "None"} \				
	output-data-config S30utputPath=s3://training_output/\$training_job_name				
	resource-config InstanceCount=2,InstanceType=ml.c4.8xlarge,VolumeSizeInGB=50 \				
Hardware —	stopping-condition MaxRuntimeInSeconds=3600				

SageMaker + Spark =

```
# Python/PySpark Example
from sagemaker_pyspark import SageMakerEstimator
```

features = spark.read.parquet('s3://<bucket>/<dataset>')

```
algorithm = SageMakerEstimator(
    trainingImage=ntm_container,
    modelImage=ntm_container,
    trainingInstanceType='ml.p3.8xlarge',
    trainingInstanceCount=16,
    endpointInstanceType='ml.c5.2xlarge',
    endpointInitialInstanceCount=4,
    hyperParameters={
        "num_topics": "100",
        "feature_dim": 250000",
        "mini_batch_size": "10000",
    },
    sagemakerRole=IAMRole(role_arn)
)
```

```
model = algorithm.fit(features)
```

SageMaker + Spark =

// Scala Example

import com.amazonaws.services.sagemaker.sparksdk.{IAMRole, SageMakerEstimator}

val features = spark.read.parquet("s3://<bucket>/<dataset>")

```
val algorithm = new SageMakerEstimator(
    trainingImage = ntm_container,
    modelImage = ntm_container,
    trainingInstanceType = "ml.p3.8xlarge",
    trainingInstanceCount = 16,
    endpointInstanceType = "ml.c5.2xlarge",
    endpointInitialInstanceCount = 4,
    hyperParameters = Map(
        "num_topics" -> "100",
        "feature_dim" -> "250000",
        "mini_batch_size" -> "10000"
    ),
    sagemakerRole = IAMRole(roleArn)
)
val model = estimator.fit(features)
```

SageMaker + Spark =

Amazon SageMaker - Try It Out

Amazon SageMaker X	Resource Groups	Д ard	Admin/libertye-Isengard @ 90	
Dashboard Notebook instances	Overview			Hide
Resources Models Endpoint configuration Endpoints	Notebook instance	Jobs	Models	O))) Endpoint
	Explore AWS data in your notebooks, and use algorithms to create models via training jobs.	Track training jobs at your desk or remotely. Leverage high-performance AWS algorithms.	Create models for hosting from job outputs, or import externally trained models into Amazon SageMaker.	Deploy endpoints for developers to use in production. A/B Test model variants via an endpoint.
	Create notebook instance	View jobs	View models	View endpoints

