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ML Algorithms in The Cloud —
New Challenges
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Lifecycle of a Machine Learning Project
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Small Data - Machine Learning
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Our Customers use ML at massive scale!

RolL

eyeview

“Our data warehouse is
100TB and we are
processing 2TB daily. We're
running mostly gradient
boosting (trees), LDA and K-
Means clustering and
collaborative filtering.”
Shahar Cizer Kobrinsky, VP
Architecture

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

dataxu.

“We process 3 million ad
requests a second, 100,000
features per request. That's
250 trillion per day. Not
your run of the mill Data
science problem!”

Bill Simmons, CTO

“We collect 160M events
daily in the ML pipeline and
run training over the last 15

days and need it to
complete in one hour.
Effectively there's 100M
features in the model”

Valentino Volonghi, CTO
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Large Scale Machine Learning
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Large Scale Machine Learning
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Cost vs. Time
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Cost vs. Time
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Cost vs. Time

Distributed, with
SSSS Strong Machines
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Cost vs. Time

Distributed, with
SSSS Strong Machines
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Model Selection
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Incremental Training
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Production Readiness

Investment

Data/Model Size
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SageMaker Algorithms -
Architecture and Data Flow
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Streaming
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Streaming
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Incremental Training
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Incremental Training
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GPU/CPU

—1| GPU State °
o%o0
.O (@)
o O

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved. V



Distributed

GPU State
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Parameter Server — distributed (k,v) store.
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Cost vs. Time
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Cost vs. Time
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Production Readiness

Reasonable
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Science of Streaming Algorithms —
Advantages and Challenges
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Simple Problems Are Unsolvable

4 points 4 points

Finding the exact median in a stream is impossible!
* After the seeing half the items, each one of them might still be the median.

 The algorithm must remember all of them.
* It cannot have a fixed memory footprint.

dWS
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Gradient Descent
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Stochastic Gradient Descent
\xz—x\ =’E[f2] ] — E

N /

rmt—1 + Oé/\/z if my_q < @y
Wk a/vVt if mi_q1 >

Frugal Streaming for Estimating Quantiles: One (or two) memory suffices: Qiang Ma, S. Muthukrishnan, Mark Sandler aWS
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SGD — Parameter Tuning
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Frugal Streaming for Estimating Quantiles: One (or two) memory suffices: Qiang Ma, S. Muthukrishnan, Mark Sandler aWS
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SGD — Distribution Drift
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Frugal Streaming for Estimating Quantiles: One (or two) memory suffices: Qiang Ma, S. Muthukrishnan, Mark Sandler aWS
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Median - Sampling Algorithm
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Sampling Algorithm:
1) Reservoir Sample k points from the data
2) Return the median of the sample
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Median — Sketching Algorithm
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SageMaker Algorithms — Accurate,
Fast, Scalable, and Easy to Use.
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Algorithms- Example Usage

Algorithm

Function

Example Usage

Linear Learner

Classification and

Boosted Decision Trees
(XGBoost)

regression, these are
the most popular ML

Factorization Machines

algorithms used today.

« Estimating click probability for online advisements (for a customer)
« Directing a customer’s inbound phone call to relevant agents
» Deciding whether a login event is legitimate.

K-means

Clustering

 Grouping similar events/document/images together

PCA

Principal Component
Analysis

« Reduce Dimensionality of data
« Explore main factors/trends in data
« Visualization

Neural Topic Modelling

Spectral LDA

Topic Modeling

« Maps documents into distribution over topics
 Discover dominant topics in your text corpus

Blazing Text

Word Embedding

 Feature Engineering for text

DeepAR

Time-series Forecasting

* Predict the number of page views you'll get in an hour (and the
number of servers you'll need to host them!)

Image Classification

Classification of Images

 Detect quality assurance issues in manufactured goods using images.

Sequence to Sequence

Learn mapping between

pairs of sequences

 Translating text between different languages.




Linear Learner

Regression: Binary Classification:
Estimate a real valued function Predict a 0O/1 class
//
//
. R 1 if x(x,w) >t
§= () +1 j=q Lrlnw
0 otherwise aws
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Linear Learner

>8x speedup over naive parallel training!

[w]]2

Fit thresholds
and select

Select model with best validation performance

dWS
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Linear Learner

Regression (mean squared error) 30 GB datasets for web-spam and web-url classification
SageMaker Other .
1.06 |
1.09
0.332 )
0.129
84.5
Classification (F1 Score) E
SageMaker Other 8 o6
0.980
0.870 )
0.997
0.964
0.859
0.470
0.903
0.508 ’ 0 5 10 15 20 25 30

Billable time in Minutes
sagemaker-url a=@m=sagemaker-spam other-url other-spam
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Boosted Decision Trees

XGBoost is one of the most Throughput vs. Number of Machines
commonly used

implementations of boosted

decision trees in the world.

1000

800

It is now available in Amazon
SageMaker!

600

Throughput in MB/Sec

400

amilc

XGBoost

0
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Number of Machines (C4.8xLarge) aWS
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Factorization Machines

) =wo+ (wi,x) + Y @, (vs,v;)

Log_loss [F1 Score| Seconds
Other (10 Iter)| 0.516 | 0.190 650
Other (20 Iter)| 0.507 | 0.254 1300
Other (50 Iter)| 0.481 0.313 3250

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Cost in Dollars

()

$200.00
$180.00
$160.00
$140.00
$120.00
$100.00
$80.00
$60.00
$40.00
$20.00
$_

] >
Click Prediction 1 TB advertising dataset,
m4.4xlarge machines, perfect scaling.
O
50 40 30 20 0
machines  machines machines
1 2 3 4 5 6 7 8

Billable Time in Hours
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K-Means Clustering

dWS
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K-Means Clustering

Method Accurate? Passes Efficient Comments
Tuning

Lloyds [1] Yes* 5-10 No

K-Means ++ [2] Yes k+5 to k+10 No scikit-learn

K-Means|| [3] Yes 7-12 No spark.ml

Online [4] No 1 No

Streaming [5,6] No 1 No Impractical

Webscale [7] No 1 No spark streaming

Coresets [8] No 1 Yes Impractical

SageMaker Yes 1 Yes

[1] Lloyd, IEEE TIT, 1982
[2] Arthur et. al. ACM-SIAM, 2007
[3] Bahmani et. al., VLDB, 2012

[4] Liberty et. al., 2015
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[5] Shindler et. al, NIPS, 2011
[6] Guha et. al, IEEE Trans. Knowl. Data Eng. 2003
[7] Sculley, WWW, 2010

[8] Feldman et. al.
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K-Means Clustering

k | SageMaker |  Other Running Time vs. Number of Clusters
Coxt 10 1.18E3 1.18E3 ’
ex
19GB 100 1.00E3  +-.9.77E2 ]
500 9.18E2 9.03E2
10 3.29E2 3.28E2". 6
Images 100 | 2.72E2 27162 |,
9GB 8
500 2.17E2 Failed é >
vid 10 2.19E2 2.18E2 <,
1aeos =
100 2.03E2 2.02E2 £
27GB v ~ |
500 | 1.86E2 1.85E2 | - Es 10x Faster!
Advertic 10 1.72E7 Failed kY
vertising : 3
127GB 100 1.30E7 Failed
500 1.03E7 Failed 1 e ,
) 10 3.81E7 Failed —
Synthetic - -~
1100GB 100 3.51E7 Failed 0 . oo
500 2.81E7 Failed o0

Number of Clusters
e=@== sagemaker other aWS

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Principal Component Analysis (PCA)

1 | aws
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Cost in Dollars
o = N w »
[V, - (9] N (9] w (9] B (9] (9]

o

Principal Component Analysis (PCA)

Cost vs. Time

L

More than 10x faster
at a fraction the cost!
0 5 10 15 20 25 30 35 40
a=@u=Other —.—sagenmh%rbﬁgﬁm'gqﬁminutes e=@==sagemaker-randomized
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Neural Topic Modeling

Output term counts vector . Perplexity Vs, Number Of Topic
Q Q Q . , Q Q * (~200K documents, ~100K vocabulary)
Decoder: oo
Softmax

Sampled Document
Representation 10000

Document
Posterior

8000

6000

Perplexity

4000

2000

0 20 40 60 80 100 120 140 160 180 200

Number of Topics

Input term counts vector

angueNTM e=@==Other
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Time Series Forecasting

Mean absolute
percentage error P90 Loss
0 ’ G DeepAR R DeepAR R
traffic

Hourly occupancy rate of 963 0.14 0.27 0.13 0.24

’ ‘ ’ ‘ ’ bay area freeways
electricity

Network Electricity use of 370 0.07 0.11 0.08 0.09
homes over time

Input pageviews 10k 032 032 044 | 031

Page view hits
of websites | 180k | 0.32 | 0.34 | 0.29 NA
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One hour on p2.xlarge, S1
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Pipe Mode (launched May 23rd

Job Execution
Time

Job Startup
Time

Throughput

Job Execution Time

Job Execution Time

12000 = File
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PCA K-Means
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Using Amazon SageMaker Algorithms on AWS
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From Amazon SageMaker Notebooks

import boto3
import sagemaker

sess = sagemaker.Session()

pca = sagemaker.estimator.Estimator(containers[boto3.Session().region name],
role,
train_instance_count=1,
train_instance_type='ml.c4.xlarge',
output path=output location,
sagemaker_ session=sess)

Pa ram ete 'S ———— » pca. set_hyperparamters (feature dim=50000,

num_components=10,

subtract_mean=True,

algorithm mode='randomized',

mini_batch_size=200)

Hardware

v

Start Training ———— pca.fit({'train': s3_train data})

pca_predictor = pca.deploy(initial instance_ count=1,
HOSt Odel instance_type='ml.c4.xlarge')

dWS
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From Command Line

profile=<your_profile>
arn_role=<your_arn_role>
training_image=382416733822.dkr.ecr.us-east-1.amazonaws.com/kmeans:1
training_job_name=clutering_text_documents_ date '+%Y_%m_%d_%H_%M_%S"'"
aws --profile $profile \
--region us-east-1 \
\

--training-job-name $training_job_name \

Algorithm

--algorithm-specification TrainingImage=$training_image,TrainingInputMode=File \
--hyper-parameters k=10, feature_dim=1024,mini_batch_size=1000 \

--role-arn $arn_role \

Input Data

--input-data-config '{"ChannelName": "train", "DataSource": {"S3DataSource":{"S3DataType": "s3prefix", "s3uri":
"s3://kmeans_demo/train", "S3DataDistributionType": "ShardedByS3Key"}}, "CompressionType": "None", "RecordwrapperType": "None"}' \

--output-data-config S30utputPath=s3://training_output/$training_job_name

--resource-config InstanceCount=2,InstanceType=ml.c4.8xlarge,volumeSizeInGB=50 \

Hardware

--stopping-condition MaxRuntimeInSeconds=3600

dWS
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SageMaker + Spark =

# Python/PySpark Example
from sagemaker_pyspark import SageMakerEstimator

features = spark.read.parquet('s3://<bucket>/<dataset>")

algorithm = SageMakerEstimator(
trainingImage=ntm_container,
modelImage=ntm_container,
trainingInstanceType="ml.p3.8xlarge",
trainingInstanceCount=16,
endpointInstanceType="ml.c5.2xlarge",
endpointInitialInstanceCount=4,
hyperParameters={
"num_topics": "100",
"feature_dim": 250000",
"mini_batch_size": "10000",
}s
sagemakerRole=IAMRole(role_arn)

)

model = algorithm.fit(features)



SageMaker + Spark =

// Scala Example
import com.amazonaws.services.sagemaker.sparksdk.{IAMRole, SageMakerEstimator}

val features = spark.read.parquet("s3://<bucket>/<dataset>")

val algorithm = new SageMakerEstimator(
trainingImage = ntm_container,
modelImage = ntm_container,
trainingInstanceType = "ml.p3.8xlarge",
trainingInstanceCount = 16,
endpointInstanceType = "ml.c5.2xlarge",
endpointInitialInstanceCount = 4,
hyperParameters = Map(
"num_topics" -> "100",
"feature_dim" -> "250000",
"mini_batch_size" -> "10000"
D5
sagemakerRole = IAMRole(roleArn)
),

val model = estimator.fit(features)



SageMaker + Spark =

\

"d

Amazon EMR Amazon SageMaker
SageMaker Managed Training Cluster
1. Load and transform (optimized for your algorithm
data e.g. 4 x p3.2xlarge)
{ A
2. Generate Features u
3. Train a model using SageMaker
4. Generate predictions
5. Use/save the
predictions
( J
[
Runs on your EMR cluster SageMaker Managed Hosting Cluster
(compute heavy — e.g. 16 x m4.4x.) (optimized for your algorithm
e : e.g. 8 x c5.2xlarge)
Spark Job

Model Artifact



Amazon SageMaker - Try It Out

Admin/libertye-Isengard @ 90...

v Oregon ~ Support ~

Resource Groups ~ * JA\
Amazon SageMaker X Amazon SageMaker Dashboard
Dashboard
Notebook instances Overview
Jobs
Resources
Models

Endpoint configuration

Endpoints Notebook instance Jobs
Explore AWS data in your Track training jobs at your
notebooks, and use desk or remotely. Leverage
algorithms to create models  high-performance AWS
via training jobs. algorithms.

Create notebook

Models

Create models for hosting
from job outputs, or import
externally trained models
into Amazon SageMaker.

Hide

5 @8 @

Endpoint

Deploy endpoints for
developers to use in
production. A/B Test model
variants via an endpoint.

l View endpoints ‘
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