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Approximate CDF
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The (empirical) CDF is given by

F (q)

F (q) =
P

i f(xi, q)

f(xi, q) =

(
1 if q > xi

0 else
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An approximate CDF is given by |F̃ (q)� F (q)|  "n
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There is a trivial coreset of size 
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Approximate CDF
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One way to get there is as like this:

F (q)

F̃ (q) =
P

i2S 2f(xi, q)

F̃ (q)



Approximate CDF
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The Discrepancy is 
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Question:

For the function 

1) We have that

2) We have a coreset of size

Does this generalize?  
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Answer: Yes

Definition: Class Discrepancy 

Lemma: For any function whose Class Discrepancy is

Its coreset complexity is 

Its streaming coreset complexity is 

Its randomized streaming coreset complexity is
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Bounding the Class Discrepancy
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Dm = c/m
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f(x, q) = 1/(1 + e
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Dm = c/m
f(x, q) = exp(�(x� q)
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Bounding the Class Discrepancy

Dm = ?

Dm = ?

q

q
f(x, q) = exp(�kx� qk2)

f(x, q) = 1/(1 + e

�hx,qi)

Sigmoid Activation Regression

Gaussian Kernel Density



Interesting Connection

Class Discrepancy                                   Rademacher Complexity

Usually:                                                      Usually: 

Governs: Coreset Complexity Governs: Sample Complexity
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p
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Look at techniques for bounding the Rademacher Complexity for inspiration...



Bounding sums of vectors
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Does not depend on n

That’s encouraging.....
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Bounding sums of matrices

Proof [Due to Nikhil Bansal in private communication] 
This is a clever application of Banaszczyk’s theorem together with 
standard bounds on the spectral norm of random matrices.

It’s also tight.



Bounding sums of all tensors powers

Lemma [Karnin, L]: For any set of vectors                 there exist signs       
such that  for all k simultaneously
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Still does not depend on n !
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Bounding the Class Discrepancy
Lemma: [Karnin, L]: The Class Discrepancy of any analytic function of the
dot product is  

Proof:

Constant if f is analytic

O(
p
d/m)

Taylor expansion



Resolves the open problem
See Philips an Tai 2018Results

O(
p
d/")

O
⇣p

d/" · log2
⇣
"n/

p
d
⌘⌘

O
⇣p

d/" · log2 log(|Q"|/�)
⌘

Dm = O(
p
d/m)

• Sigmoid Activation Regression, Logistic Regression 
• Covariance approximation, Graph Laplacians Quadratic forms
• Gaussian Kernel Density estimation

All have the above have Class Discrepancy of 

1) coresets of size                   
2) Streaming Coresets of size 
3) Randomized Streaming Coresets of size 



Back to square one  (same only different...)

Dm = ?

q

q
Dm = ?f(x, q) = exp(�kx� qk)

f(x, q) =

(
1 if hq, xi > 0

0 else

Classification with 0-1 loss

Exponential Kernel Density
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